329 research outputs found

    Time reversal three-dimensional imaging using single-cycle terahertz pulses

    Full text link
    We demonstrate three-dimensional imaging using single-cycle terahertz electromagnetic pulses. Reflection-mode imaging is performed with a photoconductive transmitter and receiver and a reconstruction algorithm based on time reversal. A two-dimensional array is synthesized from ten concentric ring annular arrays with numerical apertures ranging from 0.27 to 0.43. The system clearly distinguishes image planes separated by 1.5 mm and achieves a −6 dB lateral resolution of 1.1 mm. In terms of the illuminating terahertz power spectrum, the lateral resolution is 38% and 81% of the peak and mean wavelengths, respectively. © 2004 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69881/2/APPLAB-84-12-2196-1.pd

    Coded excitation of broadband terahertz using optical rectification in poled lithium niobate

    Full text link
    We demonstrate coded excitation of broadband terahertz for imaging applications. The encoded transmitter uses optical rectification of femtosecond laser pulses in poled lithium niobate patterned with a 53-bit53-bit binary phase code. The terahertz wave forms are detected by electro-optic sampling in zinc telluride. A digital pulse compression filter decodes the binary wave forms, producing broadband pulses at 1.0 THz1.0THz. A two-dimensional imaging experiment shows comparable performance between the encoded transmitter and a zinc telluride emitter.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87834/2/251105_1.pd

    Circular spectropolarimetric sensing of chiral photosystems in decaying leaves

    Full text link
    Circular polarization spectroscopy has proven to be an indispensable tool in photosynthesis research and (bio)-molecular research in general. Oxygenic photosystems typically display an asymmetric Cotton effect around the chlorophyll absorbance maximum with a signal 1%\leq 1 \%. In vegetation, these signals are the direct result of the chirality of the supramolecular aggregates. The circular polarization is thus directly influenced by the composition and architecture of the photosynthetic macrodomains, and is thereby linked to photosynthetic functioning. Although ordinarily measured only on a molecular level, we have developed a new spectropolarimetric instrument, TreePol, that allows for both laboratory and in-the-field measurements. Through spectral multiplexing, TreePol is capable of fast measurements with a sensitivity of 1104\sim 1*10^{-4} and is therefore suitable of non-destructively probing the molecular architecture of whole plant leaves. We have measured the chiroptical evolution of \textit{Hedera helix} leaves for a period of 22 days. Spectrally resolved circular polarization measurements (450-900 nm) on whole leaves in transmission exhibit a strong decrease in the polarization signal over time after plucking, which we accredit to the deterioration of chiral macro-aggregates. Chlorophyll \textit{a} levels measured over the same period by means of UV-Vis absorption and fluorescence spectroscopy showed a much smaller decrease. With these results we are able to distinguish healthy from deteriorating leaves. Hereby we indicate the potency of circular polarization spectroscopy on whole and intact leaves as a nondestructive tool for structural and plant stress assessment. Additionally, we underline the establishment of circular polarization signals as remotely accessible means of detecting the presence of extraterrestrial life.Comment: 29 pages, 6 figure

    Impregnation of bone chips with alendronate and cefazolin, combined with demineralized bone matrix: a bone chamber study in goats

    Get PDF
    Contains fulltext : 108265.pdf (publisher's version ) (Open Access)BACKGROUND: Bone grafts from bone banks might be mixed with bisphosphonates to inhibit the osteoclastic response. This inhibition prevents the osteoclasts to resorb the allograft bone before new bone has been formed by the osteoblasts, which might prevent instability. Since bisphosphonates may not only inhibit osteoclasts, but also osteoblasts and thus bone formation, we studied different bisphosphonate concentrations combined with allograft bone. We investigated whether locally applied alendronate has an optimum dose with respect to bone resorption and formation. Further, we questioned whether the addition of demineralized bone matrix (DBM), would stimulate bone formation. Finally, we studied the effect of high levels of antibiotics on bone allograft healing, since mixing allograft bone with antibiotics might reduce the infection risk. METHODS: 25 goats received eight bone conduction chambers in the cortical bone of the proximal medial tibia. Five concentrations of alendronate (0, 0.5 mg/mL, 1 mg/mL, 2 mg/mL, and 10 mg/mL) were tested in combination with allograft bone and supplemented with cefazolin (200 mug/mL). Allograft not supplemented with alendronate and cefazolin served as control. In addition, allograft mixed with demineralized bone matrix, with and without alendronate, was tested. After 12 weeks, graft bone area and new bone area were determined with manual point counting. RESULTS: Graft resorption decreased significantly (p < 0.001) with increasing alendronate concentration. The area of new bone in the 1 mg/mL alendronate group was significantly (p = 0.002) higher when compared to the 10 mg/mL group. No differences could be observed between the group without alendronate, but with demineralized bone, and the control groups. CONCLUSIONS: A dose-response relationship for local application of alendronate has been shown in this study. Most new bone was present at 1 mg/mL alendronate. Local application of cefazolin had no effect on bone remodelling

    Time-Reversal and Model-Based Imaging in a THz Waveguide

    Full text link
    We investigate two approaches to improving the resolution of time-reversal based THz imaging systems. First, we show that a substantial improvement in the reconstruction of time-reversed THz fields is achieved by increasing the system’s numerical aperture via a waveguide technique adapted from ultrasound imaging. Second, a model-based reconstruction algorithm is developed as an alternative to time-reversal THz imaging and its performance is demonstrated for cases with and without a waveguide.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85920/1/Fessler15.pd

    Imaging nanostructures with coherent phonon pulses

    Full text link
    We demonstrate submicron resolution imaging using picosecond acoustic phonon pulses. High-frequency acoustic pulses are generated by impulsive thermoelastic excitation of a patterned 15-nm15-nm-thick metal film on a crystalline substrate using ultrafast optical pulses. The spatiotemporal diffracted acoustic strain field is measured on the opposite side of the substrate, and this field is used in a time-reversal algorithm to reconstruct the object. The image resolution is characterized using lithographically defined 1-micron1-micron-period Al structures on Si. Straightforward technical improvements should lead to resolution approaching 45 nm45nm, extending the resolution of acoustic microscopy into the nanoscale regime.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71146/2/APPLAB-84-25-5180-1.pd

    Lowest energy excited singlet state of isolated c

    Get PDF
    In a previous letter [J. Chem. Phys. 92, 4622 (1990)] we reported the first observation of the 2 1Ag state of cis-hexatriene in a supersonic jet expansion by using resonance enhanced multiphoton ionization spectroscopy. Here, the vibrational analysis of the 1 1Ag2 1Ag excitation spectrum of cis-hexatriene is presented. The excitation spectrum shows that cis-hexatriene in the 2 1Ag state deviates slightly from planarity; a conclusion which is corroborated by ab initio calculations indicating that the nonplanarity primarily involves the terminal hydrogen atoms. Except for observable intensity in the low frequency modes associated with the small out of plane distortion, the vibronic development of the 1 1Ag2 1Ag transition in cis-hexatriene is similar to that observed for other polyenes: the 0-0 transition is the most intense feature and the next most intense band is the CC stretching fundamental. Thus the general features of the electronic structure of the cis-hexatriene 2 1Ag state are analogous to those of other polyenes. The Journal of Chemical Physics is copyrighted by The American Institute of Physics
    corecore