52 research outputs found

    Evidence-based PET for thoracic tumours

    Get PDF
    AbstractFluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is a robust imaging tool that is currently used in daily clinical practice for the evaluation of thoracic malignancies. This chapter provides an overview of the current evidence-based data on the usefulness of PET/CT for the evaluation of patients with thoracic tumours including lung cancer, pleural and thymic tumours, and esophageal cancer

    A Three-Layer Thermodynamic Model for Ice Crystal Accretion on Warm Surfaces: EMM-C

    No full text
    Ingestion of high altitude atmospheric ice particles can be hazardous to gas turbine engines in flight. Ice accretion may occur in the core compression system, leading to blockage of the core gas path, blade damage and/or flameout. Numerous engine powerloss events since 1990 have been attributed to this mechanism. An expansion in engine certification requirements to incorporate ice crystal conditions has spurred efforts to develop analytical models for phenomenon, as a method of demonstrating safe operation. A necessary component of a complete analytical icing model is a thermodynamic accretion model. Continuity and energy balances are performed using the local flow conditions and the mass fluxes of ice and water that are incident on a surface to predict the accretion growth rate. In this paper, a new thermodynamic model for ice crystal accretion is developed through adaptation of the Extended Messinger Model (EMM) from supercooled water conditions to mixed phase conditions (ice crystal and supercooled water). A novel three-layer accretion structure is proposed and the underlying equations described. The EMM improves upon the original model for airframe icing, the Messinger Model, by permitting a linear temperature gradient through the ice and water layers. This in turn allows prediction of the time over which water exists in isolation on an initially warm surface, before an ice layer forms. This is of particular interest to engine icing, as surfaces may initially be significantly above freezing temperature, before cooling on exposure to ice particles. The method is solved in a multi-step approach, where the overall exposure time is divided into discrete windows, and the calculation performed over each window. This allows the local flow conditions to be updated between windows, permitting the incorporation of a reducing flow enthalpy due to particle evaporation, as well as transient engine operation. Model results are then compared to experimental results. Comparisons are made to solutions generated using the standard Messinger Model

    ICICLE: a model for glaciated & mixed phase icing for application to aircraft engines

    No full text
    High altitude ice crystals can pose a threat to aircraft engine compression and combustion systems. Cases of engine damage, surge and rollback have been recorded in recent years, believed due to ice crystals partially melting and accreting on static surfaces (stators, endwalls and ducting). The increased awareness and understanding of this phenomenon has resulted in the extension of icing certification requirements to include glaciated and mixed phase conditions. Developing semi-empirical models is a cost effective way of enabling certification, and providing simple design rules for next generation engines. A comprehensive ice crystal icing model is presented in this paper, the Ice Crystal Icing ComputationaL Environment (ICICLE). It is modular in design, comprising a baseline code consisting of an axisymmetric or 2D planar flowfield solution, Lagrangian particle tracking, air-particle heat transfer and phase change, and surface interactions (bouncing, fragmentation, sticking). In addition, an efficient particle tracking method has been developed into the code, which employs the representative particle size distribution at each injection location and a deterministic particle sticking method by using an in-situ particle based scaling factor without aborting the particle trajectories. Various time integration algorithms, including implicit and explicit Euler and Runge-Kutta methods, are discussed and the effect on an acceptable timestep investigated. The model then improves on those available in the literature in three ways: firstly, an adaptation of the Extended Messinger Model (EMM) to mixed phase conditions is incorporated, improving the fidelity of the ice accretion prediction compared with the classical Messinger model. Secondly, an experimentally-derived model for sticking efficiency improves the accuracy of the continuity equation in the EMM; thirdly a simple model for integrating two-way coupling of mass and energy is proposed

    Minorías frente al alza en la criminalidad: Percepción de seguridad de la comunidad lesbiana, gay, bisexual y transgénero (LGBT) en Puerto Rico

    No full text
    Este artículo, primero de una serie, discute los resultados descriptivos de la investigación “Minorías frente al alza en la criminalidad: Percepción de seguridad de la comunidad lesbiana, gay, bisexual y trangénero (LGBT) en Puerto Rico”. Este estudio explora cuán segura se siente la comunidad LGBT de San Juan, Puerto Rico. En esta ocasión se discutirán los hallazgos de los componentes de seguridad, victimización y sociodemográficos del estudio. El estudio contó con la participación de 103 personas. Estos(as) participantes revelaron sentirse inseguros(as) en 73% de los casos. Por otro lado, el 44% de la muestra manifestó haber temido por su vida en un lugar público, esto por ser una persona LGBT. El alza en la criminalidad, los llamados “crímenes de odio” y las políticas públicas de seguridad del Estado, son temas que se abordan a la luz de los resultados
    corecore