1,641 research outputs found

    Mass varying dark matter in effective GCG scenarios

    Full text link
    A unified treatment of mass varying dark matter coupled to cosmon-{\em like} dark energy is shown to result in {\em effective} generalized Chaplygin gas (GCG) scenarios. The mass varying mechanism is treated as a cosmon field inherent effect. Coupling dark matter with dark energy allows for reproducing the conditions for the present cosmic acceleration and for recovering the stability resulted from a positive squared speed of sound c_{s}^{\2}, as in the GCG scenario. The scalar field mediates the nontrivial coupling between the dark matter sector and the sector responsible for the accelerated expansion of the universe. The equation of state of perturbations is the same as that of the background cosmology so that all the effective results from the GCG paradigm are maintained. Our results suggest the mass varying mechanism, when obtained from an exactly soluble field theory, as the right responsible for the stability issue and for the cosmic acceleration of the universe.Comment: 17 pages, 3 figure

    Understanding and extending subgraph GNNs by rethinking their symmetries

    Get PDF
    Subgraph GNNs are a recent class of expressive Graph Neural Networks (GNNs) which model graphs as collections of subgraphs. So far, the design space of possible Subgraph GNN architectures as well as their basic theoretical properties are still largely unexplored. In this paper, we study the most prominent form of subgraph methods, which employs node-based subgraph selection policies such as ego-networks or node marking and deletion. We address two central questions: (1) What is the upper-bound of the expressive power of these methods? and (2) What is the family of equivariant message passing layers on these sets of subgraphs?. Our first step in answering these questions is a novel symmetry analysis which shows that modelling the symmetries of node-based subgraph collections requires a significantly smaller symmetry group than the one adopted in previous works. This analysis is then used to establish a link between Subgraph GNNs and Invariant Graph Networks (IGNs). We answer the questions above by first bounding the expressive power of subgraph methods by 3-WL, and then proposing a general family of message-passing layers for subgraph methods that generalises all previous node-based Subgraph GNNs. Finally, we design a novel Subgraph GNN dubbed SUN, which theoretically unifies previous architectures while providing better empirical performance on multiple benchmarks

    Evolution of cosmological constant in effective gravity

    Full text link
    In contrast to the phenomenon of nullification of the cosmological constant in the equilibrium vacuum, which is the general property of any quantum vacuum, there are many options in modifying the Einstein equation to allow the cosmological constant to evolve in a non-equilibrium vacuum. An attempt is made to extend the Einstein equation in the direction suggested by the condensed-matter analogy of the quantum vacuum. Different scenarios are found depending on the behavior of and the relation between the relaxation parameters involved, some of these scenarios having been discussed in the literature. One of them reproduces the scenario in which the effective cosmological constant emerges as a constant of integration. The second one describes the situation, when after the cosmological phase transition the cosmological constant drops from zero to the negative value; this scenario describes the relaxation from this big negative value back to zero and then to a small positive value. In the third example the relaxation time is not a constant but depends on matter; this scenario demonstrates that the vacuum energy (or its fraction) can play the role of the cold dark matter.Comment: LaTeX file, 5 pages, no figures, version submitted to JETP Letter

    The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    Get PDF
    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented

    Magnetically Recoverable Catalysts: Beyond Magnetic Separation

    Get PDF
    Here, we discuss several important aspects of magnetically recoverable catalysts which can be realized when magnetic oxide nanoparticles are exposed to catalytic species and catalytic reaction media. In such conditions magnetic oxides can enhance performance of catalytic nanoparticles due to (i) electronic effects, (ii) catalyzing reactions which are beneficial for the final reaction outcome, or (iii) providing a capacity to dilute catalytic metal oxide species, leading to an increase of oxygen vacancies. However, this approach should be used when the magnetic oxides are stable in reaction conditions and do not promote side reactions. Incorporation of another active component, i.e., a graphene derivative, in the magnetically recoverable catalyst constitutes a smart design of a catalytic system due to synergy of its components, further enhancing catalytic properties

    The 30/20 GHz flight experiment system, phase 2. Volume 1: Executive summary

    Get PDF
    Summary information on the final communication system design, communication payload, space vehicle, and development plan for the 30/20 GHz flight experiment will be installed on the LEASAT spacecraft which will be placed into orbit from the space shuttle cargo bay. The communication concept has two parts: a truck service and a customer premise service (CPS). The trucking system serves four spot beams which are interconnected in a satellite switched time division multiple access mode by an IF switch matrix. The CPS covers two large areas of the eastern United States with a pair of scanning beams

    The 30/20 GHz flight experiment system, phase 2. Volume 3: Experiment system requirement document

    Get PDF
    An approach to the requirements document to be used to procure the system by NASA is presented. The basic approach is similar to the requirements document used in the commercial communication satellite. Enough detail requirements are given to define the system without tight constraints

    Neurogenic to Gliogenic Fate Transition Perturbed by Loss of HMGB2

    Get PDF
    Mouse cortical development relies heavily on a delicate balance between neurogenesis and gliogenesis. The lateral ventricular zone produces different classes of excitatory pyramidal cells until just before birth, when the production of astroglia begins to prevail. Epigenetic control of this fate shift is of critical importance and chromatin regulatory elements driving neuronal or astroglial development play an vital role. Different classes of chromatin binding proteins orchestrate the transcriptional repression of neuronal-specific genes, while allowing for the activation of astrocyte-specific genes. Through proteomic analysis of embryonic neural progenitor cells (NPCs) our group had previously identified high mobility group B2 (HMGB2), a chromatin protein dynamically expressed throughout embryonic development. In the current study using cultures of perinatal NPCs from HMGB2+/+ and HMGB2-/- mice we discovered that vital elements of the polycomb group (PcG) epigenetic complexes polycomb repressive complexes 1 and 2 (PRC1/2) were downregulated during the differentiation process of HMGB2-null NPCs. These epigenetic changes led to downstream changes in specific histone modification levels, specifically the trimethylation of H3K27, and a subsequent shift in the perinatal neurogenesis to gliogenesis fate transition. Collectively these results demonstrate that chromatin binding proteins, such as HMGB2, can have significant effects on the epigenetic landscape of perinatal neural stem/progenitor cells

    Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity

    Get PDF
    Catalytic palladium (Pd) nanoparticles on electrospun copolymers of acrylonitrile and acrylic acid (PAN-AA) mats were produced via reduction of PdCl2 with hydrazine. Fiber mats were electrospun from homogeneous solutions of PAN-AA and PdCl2 in dimethylformamide (DMF). Pd cations were reduced to Pd metals when fiber mats were treated in an aqueous hydrazine solution at room temperature. Pd atoms nucleate and form small crystallites whose sizes were estimated from the peak broadening of X-ray diffraction peaks. Two to four crystallites adhere together and form agglomerates. Agglomerate sizes and fiber diameters were determined by scanning and transmission electron microscopy. Spherical Pd nanoparticles were dispersed homogeneously on the electrospun nanofibers. The effects of copolymer composition and amount of PdCl2 on particle size were investigated. Pd particle size mainly depends on the amount of acrylic acid functional groups and PdCl2 concentration in the spinning solution. Increasing acrylic acid concentration on polymer chains leads to larger Pd nanoparticles. In addition, Pd particle size becomes larger with increasing PdCl2 concentration in the spinning solution. Hence, it is possible to tune the number density and the size of metal nanoparticles. The catalytic activity of the Pd nanoparticles in electrospun mats was determined by selective hydrogenation of dehydrolinalool (3,7-dimethyloct-6- ene-1-yne-3-ol, DHL) in toluene at 90 °C. Electrospun fibers with Pd particles have 4.5 times higher catalytic activity than the current Pd/Al2O3 catalyst
    • …
    corecore