191 research outputs found

    Understanding and simulating the material behavior during multi-particle irradiations

    Get PDF
    A number of studies have suggested that the irradiation behavior and damage processes occurring during sequential and simultaneous particle irradiations can significantly differ. Currently, there is no definite answer as to why and when such differences are seen. Additionally, the conventional multi-particle irradiation facilities cannot correctly reproduce the complex irradiation scenarios experienced in a number of environments like space and nuclear reactors. Therefore, a better understanding of multi-particle irradiation problems and possible alternatives are needed. This study shows ionization induced thermal spike and defect recovery during sequential and simultaneous ion irradiation of amorphous silica. The simultaneous irradiation scenario is shown to be equivalent to multiple small sequential irradiation scenarios containing latent damage formation and recovery mechanisms. The results highlight the absence of any new damage mechanism and time-space correlation between various damage events during simultaneous irradiation of amorphous silica. This offers a new and convenient way to simulate and understand complex multi-particle irradiation problems

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Nonparametric Decision Support Systems in Medical Diagnosis: Modeling Pulmonary Embolism

    No full text
    Patients face a multitude of diseases, trauma, and related medical problems that are difficult to diagnose and have large treatment and diagnostic direct costs, including pulmonary embolism (PE), which has mortality rates as high as 10%. Advanced decision-making tools, such as nonparametric neural networks (NN), may improve diagnostic capabilities for these problematic medical conditions. The research develops a backpropagation trained neural network diagnostic model to predict the occurrence of PE. Laboratory database values for 292 patients who were determined to be at risk for PE, with almost 15% suffering a confirmed PE, were collected and used to evaluate various NN models’ performances. Results indicate that using NN diagnostic models enables the leveraging of knowledge gained from standard clinical laboratory tests, specifically the d-dimer assay and reactive glucose, significantly improving overall positive predictive value, compared to using either test in isolation, and also increasing negative predictive performance

    Quantitative Inheritance of Oil in the Corn Kernel 1

    No full text

    Factors Influencing the Oil and Protein Content of Corn Grain 1

    No full text
    • …
    corecore