911 research outputs found
RXTE and ASCA Constraints on Non-thermal Emission from the A2256 Galaxy Cluster
An 8.3 hour observation of the Abell 2256 galaxy cluster using the Rossi
X-ray Timing Explorer proportional counter array produced a high quality
spectrum in the 2 - 30 keV range. Joint fitting with the 0.7 - 11 keV spectrum
obtained with the Advanced Satellite for Astrophysics and Cosmology gas imaging
spectrometer gives an upperlimit of 2.3x10^-7 photons/cm^2/sec/keV for
non-thermal emission at 30 keV. This yields a lower limit to the mean magnetic
field of 0.36 micro Gauss (uG) and an upperlimit of 1.8x10^-13 ergs/cm^3 for
the cosmic-ray electron energy density. The resulting lower limit to the
central magnetic field is ~1 - 3 uG While a magnetic field of ~0.1 - 0.2 uG can
be created by galaxy wakes, a magnetic field of several uG is usually
associated with a cooling flow or, as in the case of the Coma cluster, a
subcluster merger. However, for A2256, the evidence for a merger is weak and
the main cluster shows no evidence of a cooling flow. Thus, there is presently
no satisfactory hypothesis for the origin of an average cluster magnetic field
as high as >0.36 uG in the A2256 cluster.Comment: 8 pages, Astrophysical Journal (in press
A Comprehensive Radio and Optical Study of Abell 2256: Activity from an Infalling Group
Abell 2256 is a nearby (z~0.06), rich cluster of galaxies with fascinating
observed properties across a range of wavelengths. Long believed to represent a
cluster merger, recent X-ray and optical results have suggested that in
addition to the primary cluster and subcluster there is evidence for a third,
poorer system. We present wide-field, high sensitivity 1.4 GHz VLA radio
observations of Abell 2256 in conjunction with optical imaging and additional
spectroscopy. Over 40 cluster radio galaxies are identified, with optical
spectroscopy indicating the emission source (star formation or AGN) for most of
them. While the overall fraction of galaxies exhibiting radio emission is
consistent with a large sample of other nearby clusters, we find an increase in
the activity level of galaxies belonging to the third system (hereafter, the
``Group''). Specifically, the Group has relatively more star formation than
both the primary cluster and main subcluster. The position of the Group is also
coincident with the observed cluster radio relic. We suggest that the Group
recently (~0.3 Gyr) merged with the primary cluster and that this merger, not
the ongoing merger of the primary and the main subcluster, might be responsible
for many of the unusual radio properties of Abell 2256. Furthermore, the
greater star formation activity of the Group suggests that the infall of groups
is an important driver of galaxy evolution in clusters.Comment: 21 pages plus 13 JPEG figures; to appear in the Astronomical Journa
Current-Controlled Negative Differential Resistance due to Joule Heating in TiO2
We show that Joule heating causes current-controlled negative differential
resistance (CC-NDR) in TiO2 by constructing an analytical model of the
voltage-current V(I) characteristic based on polaronic transport for Ohm's Law
and Newton's Law of Cooling, and fitting this model to experimental data. This
threshold switching is the 'soft breakdown' observed during electroforming of
TiO2 and other transition-metal-oxide based memristors, as well as a precursor
to 'ON' or 'SET' switching of unipolar memristors from their high to their low
resistance states. The shape of the V(I) curve is a sensitive indicator of the
nature of the polaronic conduction.Comment: 13 pages, 2 figure
Calibration biases in measurements of weak lensing
As recently shown by Viola et al., the common (KSB) method for measuring weak
gravitational shear creates a non-linear relation between the measured and the
true shear of objects. We investigate here what effect such a non-linear
calibration relation may have on cosmological parameter estimates from weak
lensing if a simpler, linear calibration relation is assumed. We show that the
non-linear relation introduces a bias in the shear-correlation amplitude and
thus a bias in the cosmological parameters Omega_matter and sigma_8. Its
direction and magnitude depends on whether the point-spread function is narrow
or wide compared to the galaxy images from which the shear is measured.
Substantial over- or underestimates of the cosmological parameters are equally
possible, depending also on the variant of the KSB method. Our results show
that for trustable cosmological-parameter estimates from measurements of weak
lensing, one must verify that the method employed is free from
ellipticity-dependent biases or monitor that the calibration relation inferred
from simulations is applicable to the survey at hand.Comment: 5 pages, 3 figures, submitted to A&
Weak gravitational lensing with the Square Kilometre Array
We investigate the capabilities of various stages of the SKA to perform
world-leading weak gravitational lensing surveys. We outline a way forward to
develop the tools needed for pursuing weak lensing in the radio band. We
identify the key analysis challenges and the key pathfinder experiments that
will allow us to address them in the run up to the SKA. We identify and
summarize the unique and potentially very powerful aspects of radio weak
lensing surveys, facilitated by the SKA, that can solve major challenges in the
field of weak lensing. These include the use of polarization and rotational
velocity information to control intrinsic alignments, and the new area of weak
lensing using intensity mapping experiments. We show how the SKA lensing
surveys will both complement and enhance corresponding efforts in the optical
wavebands through cross-correlation techniques and by way of extending the
reach of weak lensing to high redshift.Comment: 19 pages, 6 figures. Cosmology Chapter, Advancing Astrophysics with
the SKA (AASKA14) Conference, Giardini Naxos (Italy), June 9th-13th 201
Cosmological Systematics Beyond Nuisance Parameters : Form Filling Functions
In the absence of any compelling physical model, cosmological systematics are
often misrepresented as statistical effects and the approach of marginalising
over extra nuisance systematic parameters is used to gauge the effect of the
systematic. In this article we argue that such an approach is risky at best
since the key choice of function can have a large effect on the resultant
cosmological errors. As an alternative we present a functional form filling
technique in which an unknown, residual, systematic is treated as such. Since
the underlying function is unknown we evaluate the effect of every functional
form allowed by the information available (either a hard boundary or some
data). Using a simple toy model we introduce the formalism of functional form
filling. We show that parameter errors can be dramatically affected by the
choice of function in the case of marginalising over a systematic, but that in
contrast the functional form filling approach is independent of the choice of
basis set. We then apply the technique to cosmic shear shape measurement
systematics and show that a shear calibration bias of |m(z)|< 0.001(1+z)^0.7 is
required for a future all-sky photometric survey to yield unbiased cosmological
parameter constraints to percent accuracy. A module associated with the work in
this paper is available through the open source iCosmo code available at
http://www.icosmo.org .Comment: 24 pages, 18 figures, accepted to MNRA
Towards Precision LSST Weak-Lensing Measurement - I: Impacts of Atmospheric Turbulence and Optical Aberration
The weak-lensing science of the LSST project drives the need to carefully
model and separate the instrumental artifacts from the intrinsic lensing
signal. The dominant source of the systematics for all ground based telescopes
is the spatial correlation of the PSF modulated by both atmospheric turbulence
and optical aberrations. In this paper, we present a full FOV simulation of the
LSST images by modeling both the atmosphere and the telescope optics with the
most current data for the telescope specifications and the environment. To
simulate the effects of atmospheric turbulence, we generated six-layer phase
screens with the parameters estimated from the on-site measurements. For the
optics, we combined the ray-tracing tool ZEMAX and our simulated focal plane
data to introduce realistic aberrations and focal plane height fluctuations.
Although this expected flatness deviation for LSST is small compared with that
of other existing cameras, the fast f-ratio of the LSST optics makes this focal
plane flatness variation and the resulting PSF discontinuities across the CCD
boundaries significant challenges in our removal of the systematics. We resolve
this complication by performing PCA CCD-by-CCD, and interpolating the basis
functions using conventional polynomials. We demonstrate that this PSF
correction scheme reduces the residual PSF ellipticity correlation below 10^-7
over the cosmologically interesting scale. From a null test using HST/UDF
galaxy images without input shear, we verify that the amplitude of the galaxy
ellipticity correlation function, after the PSF correction, is consistent with
the shot noise set by the finite number of objects. Therefore, we conclude that
the current optical design and specification for the accuracy in the focal
plane assembly are sufficient to enable the control of the PSF systematics
required for weak-lensing science with the LSST.Comment: Accepted to PASP. High-resolution version is available at
http://dls.physics.ucdavis.edu/~mkjee/LSST_weak_lensing_simulation.pd
Intrinsic alignment boosting: Direct measurement of intrinsic alignments in cosmic shear data
Intrinsic alignments constitute the major astrophysical systematic for
cosmological weak lensing surveys. We present a purely geometrical method with
which one can study gravitational shear-intrinsic ellipticity correlations
directly in weak lensing data. Linear combinations of second-order cosmic shear
measures are constructed such that the intrinsic alignment signal is boosted
while suppressing the contribution by gravitational lensing. We then assess the
performance of a specific parametrisation of the weights entering these linear
combinations for three representative survey models. Moreover a relation
between this boosting technique and the intrinsic alignment removal via nulling
is derived. For future all-sky weak lensing surveys with photometric redshift
information the boosting technique yields statistical errors on model
parameters of intrinsic alignments whose order of magnitude is compatible with
current constraints determined from indirect measurements. Parameter biases due
to a residual cosmic shear signal are negligible in case of quasi-spectroscopic
redshifts and remain sub-dominant for typical values of the photometric
redshift scatter. We find good agreement between the performance of the
intrinsic alignment removal based on the boosting technique and standard
nulling methods, possibly indicating a fundamental limit in the separation of
lensing and intrinsic alignment signals.Comment: 15 pages, 7 figures; minor changes to match accepted version;
published in Astronomy and Astrophysic
Probing dark energy with cluster counts and cosmic shear power spectra: including the full covariance
(Abridged) Combining cosmic shear power spectra and cluster counts is
powerful to improve cosmological parameter constraints and/or test inherent
systematics. However they probe the same cosmic mass density field, if the two
are drawn from the same survey region, and therefore the combination may be
less powerful than first thought. We investigate the cross-covariance between
the cosmic shear power spectra and the cluster counts based on the halo model
approach, where the cross-covariance arises from the three-point correlations
of the underlying mass density field. Fully taking into account the
cross-covariance as well as non-Gaussian errors on the lensing power spectrum
covariance, we find a significant cross-correlation between the lensing power
spectrum signals at multipoles l~10^3 and the cluster counts containing halos
with masses M>10^{14}Msun. Including the cross-covariance for the combined
measurement degrades and in some cases improves the total signal-to-noise
ratios up to plus or minus 20% relative to when the two are independent. For
cosmological parameter determination, the cross-covariance has a smaller effect
as a result of working in a multi-dimensional parameter space, implying that
the two observables can be considered independent to a good approximation. We
also discuss that cluster count experiments using lensing-selected mass peaks
could be more complementary to cosmic shear tomography than mass-selected
cluster counts of the corresponding mass threshold. Using lensing selected
clusters with a realistic usable detection threshold (S/N~6 for a ground-based
survey), the uncertainty on each dark energy parameter may be roughly halved by
the combined experiments, relative to using the power spectra alone.Comment: 32 pages, 15 figures. Revised version, invited original contribution
to gravitational lensing focus issue, New Journal of Physic
- …
