884 research outputs found

    Anti-Unruh Phenomena

    Get PDF
    We find that a uniformly accelerated particle detector coupled to the vacuum can cool down as its acceleration increases, due to relativistic effects. We show that in (1+1)-dimensions, a detector coupled to the scalar field vacuum for finite timescales (but long enough to satisfy the KMS condition) has a KMS temperature that decreases with acceleration, in certain regimes. This contrasts with the heating that one would expect from the Unruh effect.Comment: 6 pages, 5 figures. RevTex 4.1. V2. Typos in the plots labeling corrected and plot rescaled. New discussion section added. Title change

    P-V Criticality in Quasitopological Gravity

    Full text link
    We investigate the thermodynamic behaviour of AdS quasitopological black hole solutions in the context of extended thermodynamic phase space, in which the cosmological constant induces a pressure with a conjugate volume. We find that the third order exact quasitopological solution exhibits features consistent with the third order Lovelock solutions for positive quasitopological coupling, including multiple reentrant phase transitions and isolated critical points. For negative coupling we find the first instances of both reentrant phase transitions and thermodynamic singularities in five dimensions, along with other modified thermodynamic behaviour compared to Einstein-AdS-Gauss Bonnet gravity.Comment: 20 pages, 15 figures, REVTeX 4-1; updated to match published versio

    Tracking: The End of Equal Educational Opportunity

    Get PDF

    Giant Quadrupole Resonances in 208Pb, the nuclear symmetry energy and the neutron skin thickness

    Get PDF
    Recent improvements in the experimental determination of properties of the Isovector Giant Quadrupole Resonance (IVGQR), as demonstrated in the A=208 mass region, may be instrumental for characterizing the isovector channel of the effective nuclear interaction. We analyze properties of the IVGQR in 208Pb, using both macroscopic and microscopic approaches. The microscopic method is based on families of non-relativistic and covariant Energy Density Functionals (EDF), characterized by a systematic variation of isoscalar and isovector properties of the corresponding nuclear matter equations of state. The macroscopic approach yields an explicit dependence of the nuclear symmetry energy at some subsaturation density, for instance S(\rho=0.1 fm^{-3}), or the neutron skin thickness \Delta r_{np} of a heavy nucleus, on the excitation energies of isoscalar and isovector GQRs. Using available data it is found that S(\rho=0.1 fm{}^{-3})=23.3 +/- 0.6 MeV. Results obtained with the microscopic framework confirm the correlation of the \Delta r_{np} to the isoscalar and isovector GQR energies, as predicted by the macroscopic model. By exploiting this correlation together with the experimental values for the isoscalar and isovector GQR energies, we estimate \Delta r_{np} = 0.14 +/- 0.03 fm for 208Pb, and the slope parameter of the symmetry energy: L = 37 +/- 18 MeV

    Quasi-topological Reissner-Nordstr\"om Black Holes

    Full text link
    We consider Reissner-Nordstrom solutions in quasi-topological gravity, obtaining exact solutions to the field equations yielding charged quasi-topological black holes. We study their thermodynamic behaviour over a range of parameters that yield ghost-free and stable space times. We find that a sufficiently negative quasi-topological parameter can yield black holes with 2 horizons, even for zero charge. We discuss the thermodynamic stability for the class of solutions we obtain. We also describe the structure of exact charged solutions to kthk^{th} order quasi-topological gravity.Comment: LaTeX, 16 pages, 9 figures; added references and corrected typo

    Nuclear Symmetry Energy: constraints from Giant Quadrupole Resonances and Parity Violating Electron Scattering

    Full text link
    Experimental and theoretical efforts are being devoted to the study of observables that can shed light on the properties of the nuclear symmetry energy. We present our new results on the excitation energy [X. Roca-Maza et al., Phys. Rev. C 87, 034301 (2013)] and polarizability of the Isovector Giant Quadrupole Resonance (IVGQR), which has been the object of new experimental investigation [S. S. Henshaw et al., Phys. Rev. Lett. 107, 222501 (2011)]. We also present our theoretical analysis on the parity violating asymmetry at the kinematics of the Lead Radius Experiment [S. Abrahamyan et al. (PREx Collaboration), Phys. Rev. Lett. 108, 112502 (2012)] and highlight its relation with the density dependence of the symmetry energy [X. Roca-Maza et al., Phys. Rev. Lett. 106, 252501 (2011)].Comment: Proceedings - International Nuclear Physics Conference (INPC), Firenze 2 - 7 June 201

    An estimation model on electricity consumption of new metro stations

    Get PDF
    Electricity consumption of metro stations increases sharply with expansion of a metro network and this has been a growing cause for concern. Based on relevant historical data from existing metro stations, this paper proposes a support vector regression (SVR) model to estimate daily electricity consumption of a newly constructed metro station. The model considers some major factors influencing the electricity consumption of metro station in terms of both the interior design scheme of a station (e.g., layout of the station and allocation of facilities) and external factors (e.g., passenger volume, air temperature and relative humidity). A genetic algorithm with five-fold cross-validation is used to optimize the hyper-parameters of the SVR model in order to improve its accuracy in estimating the electricity consumption of a metro station (ECMS). With the optimized hyper-parameters, results from case studies on the Beijing Subway showed that the estimating accuracy of the proposed SVR model could reach up to 95% and the correlation coefficient was 0.89. It was demonstrated that the proposed model could outperform the traditional methods which use a back-propagation neural network or multivariate linear regression. The method presented in this paper can be an adequate tool for estimating the ECMS and should further assist in the delivery of new, energy-efficient metro stations
    corecore