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We find that a uniformly accelerated particle detector coupled to the vacuum can cool down as its 
acceleration increases, due to relativistic effects. We show that in (1+1)-dimensions, a detector coupled 
to the scalar field vacuum for finite timescales (but long enough to satisfy the KMS condition) has a KMS 
temperature that decreases with acceleration, in certain regimes. This contrasts with the heating that one 
would expect from the Unruh effect.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In 1976, it was proposed that the inequivalence of field quanti-
zation schemes associated with inertial and accelerated observers 
implied that observers uniformly accelerating in the Minkowski 
vacuum (as seen by inertial observers) would detect a thermal 
bath of particles [1]. Specifically, an accelerated particle detector 
coupled to the Minkowski vacuum would experience a thermal 
response [2], a phenomenon known as the Unruh effect. The tem-
perature T of this thermal bath was found to be proportional to 
the magnitude a of the proper acceleration of the detector, with 
T = a/2π . The Unruh effect has been predicted and derived in 
contexts as disparate as axiomatic quantum field theory [3], via 
Bogoliubov transformations [2], and in studies of the response of 
non-inertial particle detectors both perturbatively [2] and non-
perturbatively [4–7], and even for non-uniformly accelerated tra-
jectories [8,9]. More recently non-perturbative techniques devel-
oped in [4] have been used to prove that within optical cavities 
in (1+1)-dimensions an accelerated detector equilibrates to a ther-
mal state whose temperature is proportional to acceleration. This 
holds independently of the cavity boundary conditions, provided 
the detector is allowed enough interaction time [10].

Since all investigations so far have found that a particle detector 
coupled to the vacuum will detect more particles when it is accel-
erated than when undergoing inertial motion, we typically regard 
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the Unruh effect as a universal phenomenon: simply put, ‘acceler-
ated detectors get hotter’. The common denominator in nearly all 
previous investigations is that the response of non-inertial detec-
tors is studied for long interaction times, or for a field quantized in 
free infinite open space. However on empirical grounds, finite time 
studies with different boundary conditions are arguably relevant. 
Any experimental setup based on quantum optics (e.g. an atom 
accelerating through an optical cavity) will necessarily require par-
ticular boundary conditions rather than infinite space.

But do accelerated detectors always become hotter? In this pa-
per we address this question using both perturbative and non-per-
turbative tools. Previous numerical work on accelerating Unruh–
deWitt detectors in cavities interacting for long times found that, 
as expected, a detector gets hotter and its temperature is propor-
tional to its acceleration; T ∝ a [10]. However, due to the finite 
length and time scales, the slope was not found to be 1/2π . In this 
paper we find that when shorter interaction times comparable to 
the characteristic Heisenberg time of the detector are considered 
the transition probability of an accelerated detector can actually 
decrease with acceleration. This is possible because even an inertial 
detector switched on for a finite time in the ground state, and cou-
pled to the Minkowski vacuum, will not remain completely ‘cold’ 
but will click due to switching noise and vacuum fluctuations (see 
[11] and [4] for a perturbative and non-perturbative analysis re-
spectively).

One may be tempted to argue that this effect is due to tran-
sient behaviour. This suspicion may become even stronger given 
that the effect only manifests itself for times comparable to the 
atomic Heisenberg time. However, what makes our result surpris-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ing is that we find no clear evidence that we should associate this 
behaviour with non-equilibrium transient effects, despite the short 
interaction time. Rather we find that the response of such detec-
tors can be regarded as non-transient insofar as they satisfy the 
KMS condition, and a KMS temperature (which decreases with ac-
celeration) can therefore be defined [12,13]. This would mean that 
these ‘transients’ are of a rather special kind that satisfy detailed 
balance, a condition which states that each elementary process 
should be equilibrated by its reverse process, and which is char-
acteristic of equilibrium scenarios.

2. Transition probability of an accelerated detector

To model the field-detector interaction it is commonplace to 
use the Unruh–DeWitt (UDW) model [14], which consists of a 
point-like two-level quantum system that couples to a scalar 
field along its trajectory. We will first regard spacetime as a flat 
static cylinder with spatial circumference L > 0 (we will later 
consider the limit L → ∞). This cylinder topology is equiva-
lent to imposing periodic boundary conditions relevant to labora-
tory systems including closed optical cavities, such as optical-fibre 
loops [15], and superconducting circuits coupled to periodic mi-
crowave guides [16,17].

The coupling of the field to the detector is described by the 
UDW Hamiltonian [14]

H I = λ χ(τ )μ(τ )φ(x(τ ), t(τ )), (1)

where τ is the detector’s proper time, μ(τ) = σx(τ ) = ei�τσ+ +
e−i�τσ− is the detector’s monopole moment (with σ± being 
SU(2) ladder operators), and χ(τ ) is the switching function. For 
most of the paper we will consider χ(τ ) to be Gaussian

χ(τ ) = e−τ 2/2σ 2
, (2)

so that σ establishes the timescale of the interaction between 
the field and the detector. The time evolution operator under this 
Hamiltonian is given by the following perturbative expansion:

U = 1 + U (1) +O(λ2) = 1 − i

∞∫
−∞

dt H I (t) +O(λ2)

= − iλ
∑

m

(I+,ma†
mσ+ + I−,ma†

mσ− + H.c.) +O(λ2),

where the sum over m takes discrete values due to the periodic 
boundary conditions (k = 2πm/L). L is the scale of the natural IR 
cutoff (we neglect the interaction of the detector with the zero 
mode [18]), am and a†

m are field mode annihilation and creation 
operators, and

I±,m =
∞∫

−∞

dτ√
4π |m|e±i�τ+ 2π i

L (|m|t(τ )−mx(τ ))−τ 2/2σ 2
, (3)

which can be easily worked out from equation (1), expanding the 
field in plane-wave modes and substituting the expression for the 
monopole moment. If we consider a detector in its ground state, 
coupled to the vacuum state of the field, the transition probability 
at leading order in the perturbative expansion, will be given by

P =
∑
m �=0

|〈1m, e|U (1)|0, g〉|2 = λ2
∑
m �=0

|I+,m|2. (4)
Fig. 1. Transition rate (in units of 2πλ−2) as a function of acceleration for T = 1, 
� = 2, L = 20. Notice the decreasing transition rate with acceleration for low accel-
erations.

3. Evidence of the ‘anti-Unruh’ effect

For a uniformly accelerated two-level detector in a periodic cav-
ity, the probability of transition takes the form

P = λ2
∑
n,ε

∣∣∣∣∣∣
∞∫

−∞

dτ√
4πn

ei�τ+2πni
(

ε
aL

[
eεaτ −1

])−τ 2/2σ 2

∣∣∣∣∣∣
2

(5)

upon substituting (3) into (4) and using

[|m|t(τ ) − mx(τ )] = nε

a

[
eεaτ − 1

]
, (6)

where m = −εn where n ∈ Z
+ , ε = ±1, and t(τ ) = a−1 sinh(aτ )

and x(τ ) = a−1(cosh(aτ ) − 1). As per our comments in the intro-
duction, when a → 0, P does not vanish since we are considering 
a finite time interaction [4,11].

Since the switching function is symmetric about t = 0, the over-
all contribution of the right-moving modes is equal to the overall 
contribution of the left-moving modes, so (5) simplifies to

P = 2λ2
∑
n>0

∣∣∣∣∣∣
∞∫

−∞

dτ√
4πn

e
i�τ+2πni

(
1

aL

[
eaτ −1

])−τ 2/2σ 2

∣∣∣∣∣∣
2

, (7)

which can be recast as

P = −λ2

2π

∞∫
−∞

dτ

∞∫
−∞

dτ ′ei�(τ−τ ′)− τ2+τ ′ 2

2σ2 log[1 − e
2π i
aL

[
eaτ −eaτ ′]

]

(8)

upon summing the series in n. The first interesting feature to note 
in this expression is that the probability is not monotonically in-
creasing with acceleration for all values of the parameters, contrary 
to expected intuition from the Unruh effect.

For illustration, before employing the Gaussian switching func-
tion, let us first compute the transition rate for sudden switching 
[which in (1+1) dimensions is finite]. Unlike our later results, this 
rate can be evaluated without requiring high-performance com-
puting. Consider a detector suddenly switched on at time t = 0
and switched off at time t = T . From (8) (substituting Gaussian by 
sudden switching) the transition rate is

Ṗ = −λ2

2π
Re

⎛
⎝

T∫
0

ds ei�s log
[

1 − e
2π i
aL

(
eaT −ea(T −s)

)]⎞⎠ (9)

Plotting this expression as a function of acceleration in Fig. 1 we 
see that the rate at which this detector clicks can decrease with 
growing (small) acceleration.

We find that this phenomenon persists for Gaussian switching, 
not only in the transition rate, but also in the transition proba-
bility itself. However the latter is trickier to evaluate numerically 
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Fig. 2. Plot of the transition probability (in units of λ2) as a function of accelera-
tion. We set L = 200, σ = 0.4 and we vary σ� and L� considering both � = 0.1
(dashed) and � = 2 (solid). For the latter the excitation probability grows with ac-
celeration, whereas for the former it decreases with acceleration.

due to subtleties regarding the singular nature of the logarithmi-
cally divergent integrand. Numerically evaluating (7) for the Gaus-
sian switching (2) we find that the behaviour of the probability is 
highly dependent on the ratio of the interaction timescale σ to the 
timescale associated with the detector gap �−1. Fig. 2 displays a 
plot of (7) for different parameters, showing how varying σ� and 
L� moves us from a regime where the transition probability in-
creases with detector acceleration (as intuitively expected from the 
Unruh effect), to a regime where this probability decreases with 
acceleration.

What we have shown so far is that there are regimes for which 
an accelerated detector in a cavity (for finite times) counts fewer 
particles as its acceleration grows. It is not a sudden switching 
effect, since it is also present when the switching function is a 
smooth Gaussian. Could this be due to insufficient interaction time 
for equilibration?

To assess this, we will investigate whether or not the detector 
satisfies the KMS condition [12,13] in this regime. We will find 
that even though this phenomenon of excitation suppression with 
increasing acceleration seems to require short times, these times 
are not so short as to take the system out of the detailed-balance 
KMS condition. We can therefore use the KMS temperature as a 
temperature estimator and study how this temperature depends 
on acceleration for short timescales.

4. Perturbative analysis of thermality: the KMS condition

Perturbatively, it is commonplace to use the detailed-balance 
condition obeyed by KMS states [19] to evaluate the thermal re-
sponse of a particle detector. In the context of particle detectors, 
the KMS condition can be thought of as the postulation that the 
imbalance between the excitation and de-excitation probabilities 
of a ground-state and excited detector comes from the equilibrium 
with a thermal background. To demonstrate thermality, we would 
need to show a linear dependence of the logarithm of the KMS ra-
tio as a function of the gap �, where we define the KMS ratio as 
P(�)
P(−�)

, which for KMS states satisfies

P(�)

P(−�)
= e−�/T . (10)

This computation was performed in a manner similar to the 
previous section, though here the use of probability rather than 
transition rate meant more computing resources were required. 
The P(�) was evaluated from equation (8), where the integral was 
numerically evaluated over the range [−10σ , 10σ ] so that the er-
ror part due to the finite integration is suppressed by 10−43, well 
below our numerical precision. In addition, the number of modes 
was increased well beyond the point at which the value for the 
probability converged within the precision of the temperature.
Fig. 3. A plot of the logarithm of the KMS ratio versus � for L = 200, a = 1. Different 
lines in the series correspond to different values of the Gaussian width, σ . The 
relationship is linear even for shorter interaction timescales.

Fig. 4. Top) Density plot of the ∂T /∂a versus detector gap � (on the horizontal axis) 
and σ (on the vertical axis) for a = 1.0. Bottom) density plot of the ∂T /∂a versus 
acceleration (on the horizontal axis) and σ (on the vertical axis) for � = 1.2. In 
both plots L = 200.

For given values of (σ , L) we computed this KMS ratio for dif-
fering values of �; the temperature was then straightforwardly 
obtained from equation (10). A linear slope in the plots of the KMS 
ratio vs � corresponds to a system that obeys the KMS condition. 
Our results are shown in Fig. 3. We see that the KMS condition is 
obeyed by the detector for the ranges of parameters considered in 
the figure.

Consequently we can define a meaningful KMS temperature as 
the slope of the plot of the KMS ratio as a function of � within 
this parameter range. This way we can study the dependence of 
the KMS temperature on the detector’s acceleration to identify the 
regions where the Unruh effect is present. Concretely, we examine 
the KMS temperature for different values of σ , a, and �.

The derivative of the KMS temperature with respect to the ac-
celeration is shown as a density plot in Fig. 4; the location where 
the derivative is zero as a dashed line. We see that for increas-
ing interaction time (increasing σ ) as well as increasing detector 
gap �, the negatively sloped region disappears, in line with our ex-
pectations that for long times the slope should approach the usual 
value of 1/2π . This indicates that turning the detector on for an 
infinite amount of time yields the Unruh effect. We also see that 
the Unruh effect is recovered for large accelerations.

From Fig. 4 (top), we see that the temperature change with ac-
celeration increases in magnitude as acceleration increases. Finally, 
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(bottom) we also see that as acceleration increases, the region 
where the temperature’s derivative is negative shrinks, indicating 
that we recover the Unruh effect for large accelerations.

5. (1+1)D continuum case

The effect reported in this letter is not exclusive of cavity setups 
with periodic boundary conditions. We can examine the effect in 
the continuum just by replacing the expression (7) by its contin-
uum analogue: We obtain

P =
∞∫

−∞

dk

4π |k|
∣∣∣∣
∫

dτe
i
[
�τ− sk

a |k|(e−skaτ −1
)]− τ2

2σ2

∣∣∣∣
2

, (11)

where sk = sgn(k). We can expand this expression as

P =
∞∫

−∞

dk

4π |k|
∫

dt

∫
dt′ei�(t−t′)e

− t2+t′ 2

2σ2 × (12)

e
−i

sk
a |k|

[(
e−skat−1

)−(
e−skat′−1

)]
,

a quantity well known to be IR divergent. Introducing an IR cutoff 
� for regularization, we obtain

P = −
−�∫

−∞

dk

4πk

∫
dt

∫
dt′ei�(t−t′)e

− t2+t′ 2

2σ2

× e
−i k

a

[(
eat−1

)−(
eat′−1

)]

+
∞∫

�

dk

4πk

∫
dt

∫
dt′ei�(t−t′)e

− t2+t′ 2

2σ2

× e
−i k

a

[(
e−at−1

)−(
e−at′−1

)]
(13)

which in turn becomes

P =
∞∫

−∞
dt

∞∫
−∞

dt′ei�
(
t−t′

)
e
− t2+t′ 2

2σ2
1

4π
(14)

×
[

E1

( i�

a
(e−at − e−at′)

)
+ E1

(
− i�

a
(eat − eat′)

)]

upon performing the k integral. The principal value of the expo-
nential integral E1 is defined as

E1(z) =
∞∫

z

dk

k
e−k (15)

We can therefore evaluate the expression for the probability of 
transition for different values of the parameters characterizing the 
detectors. The results are depicted in Fig. 5. We see that as de-
tector acceleration increases, the detector can register either more 
detection events or fewer, depending on the regime of parameter 
space, demonstrating that this phenomenon is also present in the 
continuum.

Rather than any kind of boundary conditions, the key ingredi-
ent responsible for the cooling of an accelerated detector is the 
finite time coupling, both for the cavity and the continuum. Fur-
ther investigation is required in the latter case to determine if this 
is a consequence of the existence of an IR cutoff or the reduced 
dimensionality of spacetime.
Fig. 5. Plot of the transition probability (in units of λ2) as a function of acceleration. 
We set an IR cutoff of � = 10−7, σ = 0.8 for � = 0.1 (dashed) and � = 1 (solid). 
For the latter, the excitation probability grows with acceleration, whereas for the 
former it decreases with acceleration.

6. Nonperturbative thermality

Independent of our study above, we also employed a com-
pletely different approach, using a non-perturbative Gaussian for-
malism [4,10], to analyze this phenomenon. In this scenario the 
detector is modelled as a harmonic oscillator and ends up in a 
squeezed thermal state upon completion of its interaction with the 
field; thermality holds provided the squeezing contribution to the 
energy of this state is much smaller than the thermal contribution 
[4,10]. We found this criterion to hold for all values of (σ , �) in 
the relevant parameter regimes of Fig. 3, consistent with our KMS 
perturbative analysis: thermality is indeed maintained, even in the 
regime where the detector cools with increasing acceleration. With 
full disclosure, this nonperturbative calculation was computation-
ally taxing and we were not able to include enough field modes 
to guarantee full non-perturbative convergence. We therefore can 
only take this non-perturbative result as an indication, rather than 
a non-perturbative proof, of thermality. We emphasize that our 
previous KMS perturbative analysis above is devoid of these lim-
itations.

7. Discussion of results

We have therefore seen that for certain small-time regimes 
(σ � �−1), the detector experiences a counterintuitive decrease 
in temperature given an increase in acceleration. The obvious ex-
planation would appear to be that the very short time scenario 
induces a non-equilibrium transient effect, which, since it only ap-
pears for times of the order of the Heisenberg time of the detector, 
is not robust, stable, or perhaps even interesting. However we have 
found the actual situation to be considerably more subtle for sev-
eral reasons.

First of all, the effect seems to be stable and robust. We find 
that the temperature consistently and smoothly decreases with 
acceleration as we vary all the parameters of the setup. This in-
dication is further supported by our nonperturbative analysis. Fur-
thermore, the shocking evidence that this is not a typical transient 
is the apparent thermality of the effect. To the authors’ knowledge, 
we do not have a better notion for perturbative thermality than the 
KMS condition, and it indicates that we sustain equilibrium. Either 
these notions of equilibrium do not apply for our scenario, or we 
have an interaction where the transient effects should not be re-
garded as non-equilibrium, at least as regards detailed balance.

The magnitude of this effect is very small but this renders 
it no less interesting. While experimental detection of this effect 
will be challenging (as is detection of the original Unruh effect), 
we believe that studying the emergence of these phenomena may 
provide further insight into the relationship between the detailed-
balance condition and the thermality of the response of particle 
detectors in quantum field theory.
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We can gain some mathematical insight as to why for small σ�

the probability of transition can decrease with acceleration and yet 
one recovers the Unruh effect for longer σ by taking a small σ
expansion of (5); we can approximately model the salient features 
of the detector’s transition probability by the following:

P ∼
∑

n

σ

n

∣∣∣∣∣∣
1∫

−1

dη e
iση

(
�+ 2πn

L

)
e

2π ina
L σ 2η2

∣∣∣∣∣∣
2

(16)

where the dimensionless parameter η = τ/σ . There are two differ-
ent competing trends in (16). First, for small enough � and n, the 
first exponential in (16) is not highly oscillatory, the second one 
becomes more oscillatory as the acceleration is increased, there-
fore the overall value of (16) tends to decrease as acceleration 
grows. Namely, when a is small, the term ei�ση gives the dom-
inant contribution to the integral. In this regime (keeping n ∼ 1) 
we see that the integral reaches a maximum near �σ ∼ π/2. As a
increases, the integrand becomes more oscillatory and the overall 
contribution to the integral decreases.

Second, to see why the integral increases with acceleration in 
the Unruh regime, that is, for σ 
 �−1, we evaluate the integral 
(16) exactly, and use the following asymptotic expansion of the 
imaginary error function [20]

Erfi(z) ≈ z√−z2
+ 1√

π z
ez2

(
1 +O(1/z2)

)

for |z| → ∞. This essentially (for small n) corresponds to a large-�
expansion in P to O(1/�2), and we can actually compute

∂y

∣∣∣∣∣∣
1∫

−1

eixη+iyη2
dη

∣∣∣∣∣∣
2

=
32y

((
x2 + 4y2

)
cos2(x) + 2x2 sin2(x)

)
(
x2 − 4y2

)3

The expression above is always positive when x > 2y. From (16)
we have

x = σ

(
� + 2πn

L

)
, y = 2πn aσ 2

L
(17)

and so for large �σ the probability of excitation will always in-
crease with acceleration provided

� >
4πnσ

L
a (18)

The physical intuition that we extract from this analysis is that 
the vacuum fluctuations in the short-time regime excite the de-
tector (even if it is inertial) with a probability that is suppressed 
by increasing acceleration, more strongly than the Unruh-like ex-
citation due to the acceleration itself. When the interaction time 
is long enough, the vacuum fluctuations get suppressed and the 
Unruh effect contribution to the transition probability dominates. 
While this indeed suggests features of transient behaviour (short 
time energy-time uncertainty), the unexpected feature of the re-
ported phenomenon is that it appears to preserve detailed balance, 
and the KMS thermality of the detector.
8. Conclusions

We have demonstrated that for finite-time interactions σ ∼
�−1, a particle detector at constant acceleration can experience 
a cooler heat bath as compared to the same detector with a lower 
acceleration. Furthermore, when this phenomenon is manifest the 
KMS condition is satisfied in the same manner as the usual Unruh 
effect. It is quite intriguing that the detailed-balance condition can 
be satisfied under such circumstances, allowing for a definition of 
a KMS temperature. Whether or not it is possible to prolong this 
effect for longer times remains an interesting open question.

Our results have been restricted to (1+1) dimensions and as 
such have potential applicability for constrained physical systems 
such as photons in optical fibres. Extension to (3+1) dimensions 
may yield further insight into the nature of this effect, and remains 
a possibility for future work.
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