188 research outputs found

    Scenario analysis for nutrient emission reduction in the European inland waters

    Get PDF
    International audienceDespite a large body of legislation, high nutrient loads are still emitted in European inland waters. In the present study we evaluate a set of alternative scenarios aiming at reducing nitrogen and phosphorus emissions from anthropogenic activities to all European Seas. In particular, we tested the full implementation of the European Urban Waste Water Directive, which controls emissions from point source. In addition, we associated the full implementation of this Directive with a ban of phosphorus-based laundry detergents. Then we tested two human diet scenarios and their impacts on nutrient emissions. We also developed a scenario based on an optimal use of organic manure. The impacts of all our scenarios were evaluated using a statistical model of nitrogen and phosphorus fate (GREEN) linked to an agro-economic model (CAPRI). We show that the ban of phosphorus-based laundry detergents coupled with the full implementation of the Urban Waste Water Directive is the most effective approach for reducing phosphorus emissions from human based activities. Concerning nitrogen, the highest reductions are obtained with the optimized use of organic manure

    Simplicity versus complexity in modelling groundwater recharge in Chalk catchments

    Get PDF
    Models of varying complexity are available to provide estimates of recharge in headwater Chalk catchments. Some measure of how estimates vary between different models can help guide the choice of model for a particular application. This paper compares recharge estimates derived from four models employing input data at varying spatial resolutions for a Chalk headwater catchment (River Pang, UK) over a four-year period (1992-1995) that includes a range of climatic conditions. One model was validated against river flow data to provide a measure of their relative performance. Each model gave similar total recharge for the crucial winter recharge period when evaporation is low. However, the simple models produced relatively lower estimates of the summer and early autumn recharge due to the way in which processes governing recharge especially evaporation and infiltration are represented. The relative uniformity of land use, soil types and rainfall across headwater, drift-free Chalk catchments suggests that complex, distributed models offer limited benefits for recharge estimates at the catchment scale compared to simple models. Nonetheless, distributed models would be justified for studies where the pattern and amount of recharge need to be known in greater detail and to provide more reliable estimates of recharge during years with low rainfall.</p> <p style='line-height: 20px;'><b>Keywords:</b> Chalk, modelling, groundwater recharge</p

    Critical raw materials and the circular economy

    Get PDF
    This report is a background document used by several European Commission services to prepare the EC report on critical raw materials and the circular economy, a commitment of the European Commission made in its Communication ‘EU action plan for the Circular Economy’. It represents a JRC contribution to the Raw Material Initiative and to the EU Circular Economy Action Plan. It combines the results of several research programmes and activities of the JRC on critical raw materials in a context of circular economy, for which a large team has contributed in terms of data and knowledge developments. Circular use of critical raw materials in the EU is analysed, also taking a sectorial perspective. The following sectors are analysed in more detail: extractive waste, landfills, electric and electronic equipment, batteries, automotive, renewable energy, defence and chemicals and fertilisers. Conclusions and opportunities for further work are also presented

    To the moon: defining and detecting cryptocurrency pump-and-dumps

    Get PDF
    Pump-and-dump schemes are fraudulent price manipulations through the spread of misinformation and have been around in economic settings since at least the 1700s. With new technologies around cryptocurrency trading, the problem has intensified to a shorter time scale and broader scope. The scientific literature on cryptocurrency pump-and-dump schemes is scarce, and government regulation has not yet caught up, leaving cryptocurrencies particularly vulnerable to this type of market manipulation. This paper examines existing information on pump-and-dump schemes from classical economic literature, synthesises this with cryptocurrencies, and proposes criteria that can be used to define a cryptocurrency pump-and-dump. These pump-and-dump patterns exhibit anomalous behaviour; thus, techniques from anomaly detection research are utilised to locate points of anomalous trading activity in order to flag potential pump-and-dump activity. The findings suggest that there are some signals in the trading data that might help detect pump-and-dump schemes, and we demonstrate these in our detection system by examining several real-world cases. Moreover, we found that fraudulent activity clusters on specific cryptocurrency exchanges and coins. The approach, data, and findings of this paper might form a basis for further research into this emerging fraud problem and could ultimately inform crime prevention

    Estimation of incidence and social cost of colon cancer due to nitrate in drinking water in the EU: a tentative cost-benefit assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Presently, health costs associated with nitrate in drinking water are uncertain and not quantified. This limits proper evaluation of current policies and measures for solving or preventing nitrate pollution of drinking water resources. The cost for society associated with nitrate is also relevant for integrated assessment of EU nitrogen policies taking a perspective of welfare optimization. The overarching question is at which nitrogen mitigation level the social cost of measures, including their consequence for availability of food and energy, matches the social benefit of these measures for human health and biodiversity.</p> <p>Methods</p> <p>Epidemiological studies suggest colon cancer to be possibly associated with nitrate in drinking water. In this study risk increase for colon cancer is based on a case-control study for Iowa, which is extrapolated to assess the social cost for 11 EU member states by using data on cancer incidence, nitrogen leaching and drinking water supply in the EU. Health costs are provisionally compared with nitrate mitigation costs and social benefits of fertilizer use.</p> <p>Results</p> <p>For above median meat consumption the risk of colon cancer doubles when exposed to drinking water exceeding 25 mg/L of nitrate (NO<sub>3</sub>) for more than ten years. We estimate the associated increase of incidence of colon cancer from nitrate contamination of groundwater based drinking water in EU11 at 3%. This corresponds to a population-averaged health loss of 2.9 euro per capita or 0.7 euro per kg of nitrate-N leaching from fertilizer.</p> <p>Conclusions</p> <p>Our cost estimates indicate that current measures to prevent exceedance of 50 mg/L NO<sub>3 </sub>are probably beneficial for society and that a stricter nitrate limit and additional measures may be justified. The present assessment of social cost is uncertain because it considers only one type of cancer, it is based on one epidemiological study in Iowa, and involves various assumptions regarding exposure. Our results highlight the need for improved epidemiological studies.</p

    The influence of salinity on the effects of Multi-walled carbon nanotubes on polychaetes

    Get PDF
    Salinity shifts in estuarine and coastal areas are becoming a topic of concern and are one of the main factors influencing nanoparticles behaviour in the environment. For this reason, the impacts of multiwalled carbon nanotubes (MWCNTs) under different seawater salinity conditions were evaluated on the common ragworm Hediste diversicolor, a polychaete species widely used as bioindicator of estuarine environmental quality. An innovative method to assess the presence of MWCNT aggregates in the sediments was used for the first time. Biomarkers approach was used to evaluate the metabolic capacity, oxidative status and neurotoxicity of polychaetes after long-term exposure. The results revealed an alteration of energy-related responses in contaminated polychaetes under both salinity conditions, resulting in an increase of metabolism and expenditure of their energy reserves (lower glycogen and protein contents). Moreover, a concentration-dependent toxicity (higher lipid peroxidation, lower ratio between reduced and oxidized glutathione and activation of antioxidant defences and biotransformation mechanisms) was observed in H. diversicolor, especially when exposed to low salinity. Additionally, neurotoxicity was observed by inhibition of Cholinesterases activity in organisms exposed to MWCNTs at both salinities.publishe

    Enhanced hyporheic exchange flow around woody debris does not increase nitrate reduction in a sandy streambed

    Get PDF
    Anthropogenic nitrogen pollution is a critical problem in freshwaters. Although riverbeds are known to attenuate nitrate, it is not known if large woody debris (LWD) can increase this ecosystem service through enhanced hyporheic exchange and streambed residence time. Over a year, we monitored the surface water and pore water chemistry at 200 points along a ~50m reach of a lowland sandy stream with three natural LWD structures. We directly injected 15N-nitrate at 108 locations within the top 1.5m of the streambed to quantify in situ denitrification, anammox and dissimilatory nitrate reduction to ammonia, which, on average, contributed 85%, 10% and 5% of total nitrate reduction, respectively. Total nitrate reducing activity ranged from 0-16µM h-1 and was highest in the top 30cm of the stream bed. Depth, ambient nitrate and water residence time explained 44% of the observed variation in nitrate reduction; fastest rates were associated with slow flow and shallow depths. In autumn, when the river was in spate, nitrate reduction (in situ and laboratory measures) was enhanced around the LWD compared with non-woody areas, but this was not seen in the spring and summer. Overall, there was no significant effect of LWD on nitrate reduction rates in surrounding streambed sediments, but higher pore water nitrate concentrations and shorter residence times, close to LWD, indicated enhanced delivery of surface water into the streambed under high flow. When hyporheic exchange is too strong, overall nitrate reduction is inhibited due to short flow-paths and associated high oxygen concentrations

    Molecular Evidence of the Toxic Effects of Diatom Diets on Gene Expression Patterns in Copepods

    Get PDF
    Diatoms are dominant photosynthetic organisms in the world's oceans and are considered essential in the transfer of energy through marine food chains. However, these unicellular plants at times produce secondary metabolites such as polyunsaturated aldehydes and other products deriving from the oxidation of fatty acids that are collectively termed oxylipins. These cytotoxic compounds are responsible for growth inhibition and teratogenic activity, potentially sabotaging future generations of grazers by inducing poor recruitment in marine organisms such as crustacean copepods.Here we show that two days of feeding on a strong oxylipin-producing diatom (Skeletonema marinoi) is sufficient to inhibit a series of genes involved in aldehyde detoxification, apoptosis, cytoskeleton structure and stress response in the copepod Calanus helgolandicus. Of the 18 transcripts analyzed by RT-qPCR at least 50% were strongly down-regulated (aldehyde dehydrogenase 9, 8 and 6, cellular apoptosis susceptibility and inhibitor of apoptosis IAP proteins, heat shock protein 40, alpha- and beta-tubulins) compared to animals fed on a weak oxylipin-producing diet (Chaetoceros socialis) which showed no changes in gene expression profiles.Our results provide molecular evidence of the toxic effects of strong oxylipin-producing diatoms on grazers, showing that primary defense systems that should be activated to protect copepods against toxic algae can be inhibited. On the other hand other classical detoxification genes (glutathione S-transferase, superoxide dismutase, catalase, cytochrome P450) were not affected possibly due to short exposure times. Given the importance of diatom blooms in nutrient-rich aquatic environments these results offer a plausible explanation for the inefficient use of a potentially valuable food resource, the spring diatom bloom, by some copepod species
    corecore