577 research outputs found
Hydrogen-Helium Mixtures in the Interiors of Giant Planets
Equilibrium properties of hydrogen-helium mixtures under conditions similar
to the interior of giant gas planets are studied by means of first principle
density functional molecular dynamics simulations. We investigate the molecular
and atomic fluid phase of hydrogen with and without the presence of helium for
densities between gcm and gcm and
temperatures from K to . Helium has a crucial influence on
the ionic and electronic structure of the liquid. Hydrogen molecule bonds are
shortened as well as strengthened which leads to more stable hydrogen molecules
compared to pure hydrogen for the same thermodynamic conditions. The {\it ab
initio} treatment of the mixture enables us to investigate the validity of the
widely used linear mixing approximation. We find deviations of up to 8% in
energy and volume from linear mixing at constant pressure in the region of
molecular dissociation.Comment: 13 pages, 18 figures, submitted to PR
The unusual volatile composition of the Halley-type comet 8P/Tuttle: Addressing the existence of an Inner Oort Cloud
We measured organic volatiles (CH4, CH3OH, C2H6, H2CO), CO, and water in
comet 8P/Tuttle, a comet from the Oort cloud reservoir now in a short-period
Halley-type orbit. We compare its composition with two other comets in
Halley-type orbits, and with comets of the "organics-normal" and
"organics-depleted" classes. Chemical gradients are expected in the
comet-forming region of the proto-planetary disk, and an individual comet
should reflect its specific heritage. If Halley-type comets came from the inner
Oort cloud as proposed, we see no common characteristics that could distinguish
such comets from those that were stored in the outer Oort cloud.Comment: 14 pages, including 1 figure and 2 Table
The formation heritage of Jupiter Family Comet 10P/Tempel 2 as revealed by infrared spectroscopy
We present spectral and spatial information for major volatile species in
Comet 10P/Tempel 2, based on high-dispersion infrared spectra acquired on UT
2010 July 26 (heliocentric distance Rh = 1.44 AU) and September 18 (Rh = 1.62
AU), following the comet's perihelion passage on UT 2010 July 04. The total
production rate for water on July 26 was (1.90 +/- 0.12) x 10^28 molecules s-1,
and abundances of six trace gases (relative to water) were: CH3OH (1.58% +/-
0.23), C2H6 (0.39% +/- 0.04), NH3 (0.83% +/- 0.20), and HCN (0.13% +/- 0.02). A
detailed analysis of intensities for water emission lines provided a rotational
temperature of 35 +/- 3 K. The mean OPR is consistent with nuclear spin
populations in statistical equilibrium (OPR = 3.01 +/- 0.18), and the (1-sigma)
lower bound corresponds to a spin temperature > 38 K. Our measurements were
contemporaneous with a jet-like feature observed at optical wavelengths. The
spatial profiles of four primary volatiles display strong enhancements in the
jet direction, which favors release from a localized vent on the nucleus. The
measured IR continuum is much more sharply peaked and is consistent with a
dominant contribution from the nucleus itself. The peak intensities for H2O,
CH3OH, and C2H6 are offset by ~200 km in the jet direction, suggesting the
possible existence of a distributed source, such as the release of icy grains
that subsequently sublimed in the coma. On UT September 18, no obvious emission
lines were present in our spectra, nevertheless we obtained a 3-sigma upper
limit Q(H2O) < 2.86 x 10^27 molecules s-1
Highly Depleted Ethane and Mildly Depleted Methanol in Comet 21P/Giacobini-Zinner: Application of a New Empirical nu(sub 2) Band Model for CH30H Near 50 K
Infrared spectra of Comet 2lP/Giacobini-Zinner (hereafter 2IP/GZ) were obtained using NIRSPEC at Keck II on UT 2005 June 03, approximately one month before perihelion, that simultaneously measured H2O, C2H6, and CH3OH. For H2O, the production rate of 3.8 x 10(exp 28) molecules / S was consistent with that measured during other apparitions of 21P/GZ retrieved from optical, infrared, and mm-wavelength observations. The water analysis also provided values for rotational temperature (T(sub rot) = 55(epx +3) /-.2 K) and the abundance ratio of ortho- and para-water (3.00 +/-0.15, implying a spin temperature exceeding 50 K). Six Q-branches in the V7 band of C2H6 provided a production rate (5.27 +/- 0.90 x 10(exp 25)/S) that corresponded to an abundance ratio of 0.139 +/- 0.024 % relative to H2O, confirming the previously reported strong depletion of C2H6 from IR observations during the 1998 apparition, and in qualitative agreement with the depletion in C2 known from optical studies. For CH30H, we applied our recently published ab initia model for the v3 band to obtain a rotational temperature (48(exp + 10) / -7 K) consistent with that obtained for H2O. In addition we applied a newly developed empirical model for the CH30H v2 band, and obtained a production rate consistent with that obtained from the v3 band. Combining results from both v2 and v3 bands provided a production rate (47.5 +/- 4.4 x 10(exp 25) / S) that corresponded to an abundance ratio of 1.25 +/- 0.12 % relative to H2O in 21P/GZ. Our study provides the first measure of primary volatile production rates for any Jupiter family comet over multiple apparitions using high resolution IR spectroscopy
Volatile Composition and Outgassing in C/2018 Y1 (IWAMOTO): Extending Detection Limits for High-Resolution IR Cometary Spectroscopy at the NASA-IRTF
We used iSHELL, the powerful high-resolution ( /~ 40,000) cross-dispersed IR spectrograph at the NASA-IRTF to measure the native ice composition and outgassing of moderately bright, long-period comet C/2018 Y1 (Iwamoto) (hereafter Y1) within weeks of its discovery. We measured production rates for H2O, and production rates and abundance ratios relative to H2O for eight trace molecules, including the most complete measure of cometary CH4 achieved to date. Compared with mean abundances measured among comets, our study revealed enriched CH3OH and C2H6 yet depleted CO and C2H2, perhaps indicating highly efficient H- atom addition on interstellar grains prior to their incorporation into the nucleus. The combined high spectral resolving power and broad spectral coverage of iSHELL allowed characterizing cometary composition using only three instrument settings, and its long-slit coverage allowed comparing the spatial distributions of molecular emissions and dust continuum
Recognition of membrane sterols by polyene antifungals amphotericin B and natamycin, a 13C MAS NMR Study
The molecular action of polyene macrolides with antifungal activity, amphotericin B and natamycin, involves recognition of sterols in membranes. Physicochemical and functional studies have contributed details to understanding the interactions between amphotericin B and ergosterol and, to a lesser extent, with cholesterol. Fewer molecular details are available on interactions between natamycin with sterols. We use solid state 13C MAS NMR to characterize the impact of amphotericin B and natamycin on mixed lipid membranes of DOPC/cholesterol or DOPC/ergosterol. In cholesterol-containing membranes, amphotericin B addition resulted in marked increase in both DOPC and cholesterol 13C MAS NMR linewidth, reflecting membrane insertion and cooperative perturbation of the bilayer. By contrast, natamycin affects little either DOPC or cholesterol linewidth but attenuates cholesterol resonance intensity preferentially for sterol core with lesser impact on the chain. Ergosterol resonances, attenuated by amphotericin B, reveal specific interactions in the sterol core and chain base. Natamycin addition selectively augmented ergosterol resonances from sterol core ring one and, at the same time, from the end of the chain. This puts forward an interaction model similar to the head-to-tail model for amphotericin B/ergosterol pairing but with docking on opposite sterol faces. Low toxicity of natamycin is attributed to selective, non-cooperative sterol engagement compared to cooperative membrane perturbation by amphotericin B
Temporal and Spatial Aspects of Gas Release During the 2010 Apparition of Comet 103P/Hartley-2
We report measurements of eight primary volatiles (H2O, HCN, CH4, C2H6,
CH3OH, C2H2, H2CO, and NH3) and two product species (OH and NH2) in comet
103P/Hartley-2 using high dispersion infrared spectroscopy. We quantified the
long- and short-term behavior of volatile release over a three-month interval
that encompassed the comet's close approach to Earth, its perihelion passage,
and flyby of the comet by the Deep Impact spacecraft during the EPOXI mission.
We present production rates for individual species, their mixing ratios
relative to water, and their spatial distributions in the coma on multiple
dates. The production rates for water, ethane, HCN, and methanol vary in a
manner consistent with independent measures of nucleus rotation, but mixing
ratios for HCN, C2H6, & CH3OH are independent of rotational phase. Our results
demonstrate that the ensemble average composition of gas released from the
nucleus is well defined, and relatively constant over the three-month interval
(September 18 through December 17). If individual vents vary in composition,
enough diverse vents must be active simultaneously to approximate (in sum) the
bulk composition of the nucleus. The released primary volatiles exhibit diverse
spatial properties which favor the presence of separate polar and apolar ice
phases in the nucleus, establish dust and gas release from icy clumps (and
also, directly from the nucleus), and provide insights into the driver for the
cyanogen (CN) polar jet. The spatial distributions of C2H6 & HCN along the
near-polar jet (UT 19.5 October) and nearly orthogonal to it (UT 22.5 October)
are discussed relative to the origin of CN. The ortho-para ratio (OPR) of water
was 2.85 \pm 0.20; the lower bound (2.65) defines Tspin > 32 K. These values
are consistent with results returned from ISO in 1997.Comment: 18 pages, 3 figures, to be published in: Astrophysical Journal
Letter
Recognition of membrane sterols by polyene antifungals amphotericin B and natamycin, a 13C MAS NMR Study
The molecular action of polyene macrolides with antifungal activity, amphotericin B and natamycin, involves recognition of sterols in membranes. Physicochemical and functional studies have contributed details to understanding the interactions between amphotericin B and ergosterol and, to a lesser extent, with cholesterol. Fewer molecular details are available on interactions between natamycin with sterols. We use solid state 13C MAS NMR to characterize the impact of amphotericin B and natamycin on mixed lipid membranes of DOPC/cholesterol or DOPC/ergosterol. In cholesterol-containing membranes, amphotericin B addition resulted in marked increase in both DOPC and cholesterol 13C MAS NMR linewidth, reflecting membrane insertion and cooperative perturbation of the bilayer. By contrast, natamycin affects little either DOPC or cholesterol linewidth but attenuates cholesterol resonance intensity preferentially for sterol core with lesser impact on the chain. Ergosterol resonances, attenuated by amphotericin B, reveal specific interactions in the sterol core and chain base. Natamycin addition selectively augmented ergosterol resonances from sterol core ring one and, at the same time, from the end of the chain. This puts forward an interaction model similar to the head-to-tail model for amphotericin B/ergosterol pairing but with docking on opposite sterol faces. Low toxicity of natamycin is attributed to selective, non-cooperative sterol engagement compared to cooperative membrane perturbation by amphotericin B
The Volatile Fraction of Comets as Quantified at Infrared Wavelengths - An Emerging Taxonomy and Implications for Natal Heritage
It is relatively easy to identify the reservoir from which a given comet was ejected. But dynamical models demonstrate that the main cometary reservoirs (Kuiper Belt, Oort Cloud) each contain icy bodies that formed in a range of environments in the protoplanetary disk, and the Oort Cloud may even contain bodies that formed in disks of sibling stars in the Sun s birth cluster. The cometary nucleus contains clues to the formative region(s) of its individual components. The composition of ices and rocky grains reflect a range of processes experienced by material while on the journey from the natal interstellar cloud core to the cometary nucleus. For that reason, emphasis is placed on classifying comets according to their native ices and dust (rather than orbital dynamics). Mumma & Charnley [1] reviewed the current status of taxonomies for comets and relation to their natal heritage
Interpreting Methanol v(sub 2)-Band Emission in Comets Using Empirical Fluorescence g-Factors
For many years we have been developing the ability, through high-resolution spectroscopy targeting ro-vibrational emission in the approximately 3 - 5 micrometer region, to quantify a suite of (approximately 10) parent volatiles in comets using quantum mechanical fluorescence models. Our efforts are ongoing and our latest includes methanol (CH3OH). This is unique among traditionally targeted species in having lacked sufficiently robust models for its symmetric (v(sub 3) band) and asymmetric (v(sub 2) and v(sub 9) bands) C-H3 stretching modes, required to provide accurate predicted intensities for individual spectral lines and hence rotational temperatures and production rates. This has provided the driver for undertaking a detailed empirical study of line intensities, and has led to substantial progress regarding our ability to interpret CH3OH in comets. The present study concentrates on the spectral region from approximately 2970 - 3010 per centimeter (3.367 - 3.322 micrometer), which is dominated by emission in the (v(sub 7) band of C2H6 and the v(sub 2) band of CH3OH, with minor contributions from CH3OH (v(sub 9) band), CH4 (v(sub 3)), and OH prompt emissions (v(sub 1) and v(sub 2)- v(sub 1)). Based on laboratory jet-cooled spectra (at a rotational temperature near 20 K)[1], we incorporated approximately 100 lines of the CH3OH v(sub 2) band, having known frequencies and lower state rotational energies, into our model. Line intensities were determined through comparison with several comets we observed with NIRSPEC at Keck 2, after removal of continuum and additional molecular emissions and correcting for atmospheric extinction. In addition to the above spectral region, NIRSPEC allows simultaneous sampling of the CH3OH v(sub 3) band (centered at 2844 per centimeter, or 3.516 micrometers and several hot bands of H2O in the approximately 2.85 - 2.9 micrometer region, at a nominal spectral resolving power of approximately 25,000 [2]. Empirical g-factors for v(sub 2) lines were based on the production rate as determined from the v(sub 3) Q-branch intensity; application to comets spanning a range of rotational temperatures (approximately 50 - 90 K) will be reported. This work represents an extension of that presented for comet 21P/Giacobini-Zinner at the 2010 Division for Planetary Sciences meeting [3]. Our empirical study also allows for quantifying CH3OH in comets using IR spectrometers for which the v(sub 3) and v(sub 2) bands are not sampled simultaneously, for example CSHELL/NASA IRTF or CRIRES/VLT
- …
