20 research outputs found

    Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity

    Get PDF
    The papain-like protease PLpro is an essential coronavirus enzyme required for processing viral polyproteins to generate a functional replicase complex and enable viral spread1,2. PLpro is also implicated in cleaving proteinaceous post-translational modifications on host proteins as an evasion mechanism against host anti-viral immune responses3–5. Here, we provide biochemical, structural and functional characterization of the SARS-CoV-2 PLpro (SCoV2-PLpro) and outline differences to SARS-CoV PLpro (SCoV-PLpro) in controlling host interferon (IFN) and NF-κB pathways. While SCoV2-PLpro and SCoV-PLpro share 83% sequence identity, they exhibit different host substrate preferences. In particular, SCoV2-PLpro preferentially cleaves the ubiquitin-like protein ISG15, whereas SCoV-PLpro predominantly targets ubiquitin chains. The crystal structure of SCoV2-PLpro in complex with ISG15 reveals distinctive interactions with the amino-terminal ubiquitin-like domain of ISG15, highlighting this high affinity and specificity. Furthermore, upon infection, SCoV2-PLpro contributes to the cleavage of ISG15 from interferon responsive factor 3 (IRF3) and attenuates type I interferon responses. Importantly, inhibition of SCoV2-PLpro with GRL-0617 impairs the virus-induced cytopathogenic effect, fosters the anti-viral interferon pathway and reduces viral replication in infected cells. These results highlight a dual therapeutic strategy in which targeting of SCoV2-PLpro can suppress SARS-CoV-2 infection and promote anti-viral immunity
    corecore