41 research outputs found

    Systematic errors in peptide and protein identification and quantification by modified peptides

    Get PDF
    The principle of shotgun proteomics is to use peptide mass spectra in order to identify corresponding sequences in a protein database. The quality of peptide and protein identification and quantification critically depends on the sensitivity and specificity of this assignment process. Many peptides in proteomic samples carry biochemical modifications, and a large fraction of unassigned spectra arise from modified peptides. Spectra derived from modified peptides can erroneously be assigned to wrong amino acid sequences. However, the impact of this problem on proteomic data has not yet been investigated systematically. Here we use combinations of different database searches to show that modified peptides can be responsible for 20-50 % of false positive identifications in deep proteomic datasets. These false positive hits are particularly problematic as they have significantly higher scores and higher intensities than other false positive matches. Furthermore, these wrong peptide assignments lead to hundreds of false protein identifications and systematic biases in protein quantification. We devise a "cleaned search" strategy to address this problem and show that this considerably improves the sensitivity and specificity of proteomic data. In summary, we show that modified peptides cause systematic errors in peptide and protein identification and quantification and should therefore be considered to further improve the quality of proteomic data annotation

    Engineering, decoding and systems-level characterization of chimpanzee cytomegalovirus

    Get PDF
    The chimpanzee cytomegalovirus (CCMV) is the closest relative of human CMV (HCMV). Because of the high conservation between these two species and the ability of human cells to fully support CCMV replication, CCMV holds great potential as a model system for HCMV. To make the CCMV genome available for precise and rapid gene manipulation techniques, we captured the genomic DNA of CCMV strain Heberling as a bacterial artificial chromosome (BAC). Selected BAC clones were reconstituted to infectious viruses, growing to similar high titers as parental CCMV. DNA sequencing confirmed the integrity of our clones and led to the identification of two polymorphic loci and a deletion-prone region within the CCMV genome. To re-evaluate the CCMV coding potential, we analyzed the viral transcriptome and proteome and identified several novel ORFs, splice variants, and regulatory RNAs. We further characterized the dynamics of CCMV gene expression and found that viral proteins cluster into five distinct temporal classes. In addition, our datasets revealed that the host response to CCMV infection and the de-regulation of cellular pathways are in line with known hallmarks of HCMV infection. In a first functional experiment, we investigated a proposed frameshift mutation in UL128 that was suspected to restrict CCMV's cell tropism. In fact, repair of this frameshift re-established productive CCMV infection in endothelial and epithelial cells, expanding the options of CCMV as an infection model. Thus, BAC-cloned CCMV can serve as a powerful tool for systematic approaches in comparative functional genomics, exploiting the close phylogenetic relationship between CCMV and HCMV

    Quantitative Proteomic Approach Identifies Vpr Binding Protein as Novel Host Factor Supporting Influenza A Virus Infections in Human Cells

    Get PDF
    Influenza A virus infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans. While seasonal or pandemic influenza A virus (IAV) strains replicate efficiently in permissive human cells, many avian IAV cause abortive non-productive infections in these hosts despite successful cell entry. However, the precise reasons for these differential outcomes are poorly defined. We hypothesized that the distinct course of an IAV infection with a given virus strain is determined by the differential interplay between specific host and viral factors. By using Spike-in SILAC mass spectrometry-based quantitative proteomics we characterized sets of cellular factors whose abundance is specifically up- or down-regulated in the course of permissive vs. non-permissive IAV infection, respectively. This approach allowed for the definition and quantitative comparison of about 3500 proteins in human lung epithelial cells in response to seasonal or low-pathogenic avian H3N2 IAV. Many identified proteins were similarly regulated by both virus strains, but also 16 candidates with distinct changes in permissive vs. non-permissive infection were found. RNAi-mediated knockdown of these differentially regulated host factors identified Vpr binding protein (VprBP) as pro-viral host factor since its down-regulation inhibited efficient propagation of seasonal IAV while over-expression increased viral replication of both seasonal and avian IAV. These results not only show that there are similar differences in the overall changes during permissive and non-permissive imfluenza virus infections, but also provide a basis to evaluate VprBP as novel anti-IAV drug target

    Phosphorylation of the ribosomal protein RPL12/uL11 affects translation during mitosis

    Get PDF
    Emerging evidence indicates that heterogeneity in ribosome composition can give rise to specialized functions. Until now, research mainly focused on differences in core ribosomal proteins and associated factors. The effect of posttranslational modifications has not been studied systematically. Analyzing ribosome heterogeneity is challenging because individual proteins can be part of different subcomplexes (40S, 60S, 80S, and polysomes). Here we develop polysome proteome profiling to obtain unbiased proteomic maps across ribosomal subcomplexes. Our method combines extensive fractionation by sucrose gradient centrifugation with quantitative mass spectrometry. The high resolution of the profiles allows us to assign proteins to specific subcomplexes. Phosphoproteomics on the fractions reveals that phosphorylation of serine 38 in RPL12/uL11, a known mitotic CDK1 substrate, is strongly depleted in polysomes. Follow-up experiments confirm that RPL12/uL11 phosphorylation regulates the translation of specific subsets of mRNAs during mitosis. Together, our results show that posttranslational modification of ribosomal proteins can regulate translation

    Cross-regulation of viral kinases with cyclin A secures shutoff of host DNA synthesis

    Get PDF
    Herpesviruses encode conserved protein kinases (CHPKs) to stimulate phosphorylation-sensitive processes during infection. How CHPKs bind to cellular factors and how this impacts their regulatory functions is poorly understood. Here, we use quantitative proteomics to determine cellular interaction partners of human herpesvirus (HHV) CHPKs. We find that CHPKs can target key regulators of transcription and replication. The interaction with Cyclin A and associated factors is identified as a signature of β-herpesvirus kinases. Cyclin A is recruited via RXL motifs that overlap with nuclear localization signals (NLS) in the non-catalytic N termini. This architecture is conserved in HHV6, HHV7 and rodent cytomegaloviruses. Cyclin A binding competes with NLS function, enabling dynamic changes in CHPK localization and substrate phosphorylation. The cytomegalovirus kinase M97 sequesters Cyclin A in the cytosol, which is essential for viral inhibition of cellular replication. Our data highlight a fine-tuned and physiologically important interplay between a cellular cyclin and viral kinases

    Combining metabolic pulse labeling and quantitative proteomics to monitor protein synthesis upon viral infection

    No full text
    Viruses like influenza A virus (IAV) hijack host cells in order to replicate. To actively and abundantly synthesize viral proteins, they reprogram the cellular transcriptional and translational landscape. Here, we present a proteomic approach that allows us to quantify the differences in host and viral protein synthesis comparatively for different strains of IAV. The method is based on combining quantitative proteomics using stable isotope labelling by amino acids in cell culture (SILAC) and bioorthogonal labeling with methionine analogs. This methodology accurately quantifies synthesis of host and viral proteins with high temporal resolution and faithfully detects global changes in cellular translation capacity. It thus provides unique insights into the dynamics of protein synthesis as the infection progresses

    Cross-regulation of viral kinases with cyclin A secures shutoff of host DNA synthesis

    Get PDF
    Herpesviruses encode conserved protein kinases to stimulate phosphorylation-sensitive processes during infection. How these kinases bind to cellular factors and how this impacts their regulatory functions is poorly understood. Here, we use quantitative proteomics to determine cellular interaction partners of human herpesvirus (HHV) kinases. We find that these kinases can target key regulators of transcription and replication. The interaction with Cyclin A and associated factors is identified as a specific signature of β-herpesvirus kinases. Cyclin A is recruited via RXL-motifs that overlap with nuclear localization signals (NLS) and locate in the non-catalytic N-terminal regions. This architecture is conserved for viral kinases of HHV6, HHV7 and rodent CMVs. Docking to Cyclin A competes with NLS function, enabling dynamic changes in kinase localization and substrate phosphorylation. The viral kinase redirects Cyclin A to the cytosol, which is essential for the inhibition of cellular DNA replication during infection. Our data highlight a fine-tuned and physiologically important interplay between a cellular cyclin and viral kinases

    Phosphosite analysis of the cytomegaloviral mRNA export factor pUL69 reveals serines with critical importance for recruitment of cellular proteins Pin1 and UAP56/URH49

    No full text
    Human cytomegalovirus (HCMV) encodes the viral mRNA export factor pUL69, which facilitates the cytoplasmic accumulation of mRNA via interaction with the cellular RNA helicase UAP56 or URH49. We reported previously that pUL69 is phosphorylated by cellular CDKs and the viral CDK-like kinase pUL97. Here, we set out to identify phosphorylation sites within pUL69 and to characterize their importance. Mass spectrometry-based phosphosite mapping of pUL69 identified 10 serine/threonine residues as phosphoacceptors. Surprisingly, only a few of these sites localized to the N terminus of pUL69, which could be due to the presence of additional posttranslational modifications, like arginine methylation. As an alternative approach, pUL69 mutants with substitutions of putative phosphosites were analyzed by Phos-tag SDS-PAGE. This demonstrated that serines S46 and S49 serve as targets for phosphorylation by pUL97. Furthermore, we provide evidence that phosphorylation of these serines mediates cis/trans isomerization by the prolyl isomerase Pin1, thus forming a functional Pin1 binding motif. Surprisingly, while abrogation of the Pin1 motif did not affect the replication of recombinant cytomegaloviruses, mutation of serines next to the interaction site for UAP56/URH49 strongly decreased viral replication. This was correlated with a loss of UAP56/URH49 recruitment. Intriguingly, the critical serines S13 and S15 were located within a sequence resembling the UAP56 binding motif (UBM) of cellular mRNA adaptor proteins like REF and UIF. We propose that betaherpesviral mRNA export factors have evolved an extended UAP56/URH49 recognition sequence harboring phosphorylation sites to increase their binding affinities. This may serve as a strategy to successfully compete with cellular mRNA adaptor proteins for binding to UAP56/URH49. IMPORTANCE The multifunctional regulatory protein pUL69 of human cytomegalovirus acts as a viral RNA export factor with a critical role in efficient replication. Here, we identify serine/threonine phosphorylation sites for cellular and viral kinases within pUL69. We demonstrate that the pUL97/CDK phosphosites within alpha-helix 2 of pUL69 are crucial for its cis/trans isomerization by the cellular protein Pin1. Thus, we identified pUL69 as the first HCMV-encoded protein that is phosphorylated by cellular and viral serine/threonine kinases in order to serve as a substrate for Pin1. Furthermore, our study revealed that betaherpesviral mRNA export proteins contain extended binding motifs for the cellular mRNA adaptor proteins UAP56/URH49 harboring phosphorylated serines that are critical for efficient viral replication. Knowledge of the phosphorylation sites of pUL69 and the processes regulated by these posttranslational modifications is important in order to develop antiviral strategies based on a specific interference with pUL69 phosphorylation

    Murine cytomegalovirus M25 proteins sequester the tumor suppressor protein p53 in nuclear accumulations

    No full text
    To ensure productive infection herpesviruses utilize tegument proteins and nonstructural regulatory proteins to counteract cellular defense mechanisms and to reprogram cellular pathways. The M25 proteins of mouse cytomegalovirus (MCMV) belong to the beta-herpesvirus UL25 gene family that encodes viral proteins implicated with regulatory functions. Through affinity purification and mass spectrometric analysis, we discovered the tumor suppressor protein p53 as a host factor interacting with the M25 proteins. M25-p53 interaction in infected and transfected cells was confirmed by co-immunoprecipitation. Moreover, the proteins co-localized in nuclear dot-like structures upon both infection and inducible expression of the two M25 isoforms. p53 accumulated in wildtype MCMV-infected cells, while this did not occur upon infection with a mutant lacking the M25 gene. Both M25 proteins were able to mediate the effect, identifying them as the first CMV proteins responsible for p53 accumulation during infection. Interaction with M25 proteins led to substantial prolongation of the half-life of p53. Contrary to the higher abundance of the p53 protein in wildtype MCMV-infected cells, the transcript levels of the prominent p53 target genes Cdkn1a and Mdm2 were diminished compared to cells infected with the ΔM25 mutant, and this was associated with reduced binding of p53 to responsive elements within the respective promoters. Notably, the productivity of the M25 deletion mutant was partially rescued on p53-negative fibroblasts. We propose that the MCMV M25 proteins sequester p53 molecules in the nucleus of infected cells, reducing their availability for activating a subset of p53-regulated genes, thereby dampening the antiviral role of p53. IMPORTANCE: Host cells use a number of factors to defend against viral infection. Viruses are, however, in an arms race with their host cells to overcome these defense mechanisms. The tumor suppressor protein p53 is an important sensor of cell stress induced by oncogenic insults or viral infections, which upon activation induces various pathways to ensure the integrity of cells. Viruses have to counteract many functions of p53, but complex DNA viruses such as cytomegaloviruses may also utilize some p53 functions for their own benefit. In this study, we discovered that the M25 proteins of mouse cytomegalovirus interact with p53 and mediate its accumulation during infection. Interaction with the M25 proteins sequesters p53 molecules in nuclear dot-like structures, limiting their availability for activation of a subset of p53-regulated target genes. Understanding the interaction between viral proteins and p53 may allow to develop new therapeutic strategies against cytomegalovirus and other viruses
    corecore