466 research outputs found

    Modelling of Quench Limit for Steady State Heat Deposits in LHC Magnets

    Get PDF
    A quench, the transition of a conductor from the superconducting to the normal conducting state, occurs irreversibly in the accelerator magnets if one of the three parameters: temperature, magnetic field or current density exceeds a critical value. Energy deposited in the superconductor by the particle beams provokes quenches detrimental for the accelerator operation. In particular if particles impacting on the vacuum chamber and their secondary showers depose energy in the magnet coils. The Large Hadron Collider (LHC) nominal beam intensity is 3.2 ldr 10^14 protons. A quench occurs if a fraction of the order of 10^7 protons per second is lost locally. A network model is used to simulate the thermodynamic behaviour of the magnets. The heat flow in the network model was validated with measurements performed in the CERN magnet test facility. A steady state heat flow was introduced in the coil by using the quench heaters implemented in the LHC magnets. The value of the heat source current is determined by the network model and the magnet coil current which is required to quench the coil is predicted accordantly. The measured and predicted value comparison is regarded as a sensitive test of the method

    Beam losses from ultra-peripheral nuclear collisions between Pb ions in the Large Hadron Collider and their alleviation

    Get PDF
    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of Pb ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal Pb operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.Comment: 17 pages, 20 figure

    Susceptibility Provision Enhances Effective De-escalation (SPEED): utilizing rapid phenotypic susceptibility testing in Gram-negative bloodstream infections and its potential clinical impact

    Get PDF
    Abstract Objectives We evaluated the performance and time to result for pathogen identification (ID) and antimicrobial susceptibility testing (AST) of the Accelerate Pheno™ system (AXDX) compared with standard of care (SOC) methods. We also assessed the hypothetical improvement in antibiotic utilization if AXDX had been implemented. Methods Clinical samples from patients with monomicrobial Gram-negative bacteraemia were tested and compared between AXDX and the SOC methods of the VERIGENE® and Bruker MALDI Biotyper® systems for ID and the VITEK® 2 system for AST. Additionally, charts were reviewed to calculate theoretical times to antibiotic de-escalation, escalation and active and optimal therapy Results ID mean time was 21 h for MALDI-TOF MS, 4.4 h for VERIGENE® and 3.7 h for AXDX. AST mean time was 35 h for VITEK® 2 and 9.0 h for AXDX. For ID, positive percentage agreement was 95.9% and negative percentage agreement was 99.9%. For AST, essential agreement was 94.5% and categorical agreement was 93.5%. If AXDX results had been available to inform patient care, 25% of patients could have been put on active therapy sooner, while 78% of patients who had therapy optimized during hospitalization could have had therapy optimized sooner. Additionally, AXDX could have reduced time to de-escalation (16 versus 31 h) and escalation (19 versus 31 h) compared with SOC. Conclusions By providing fast and reliable ID and AST results, AXDX has the potential to improve antimicrobial utilization and enhance antimicrobial stewardship

    Generation of 1.5 Million Beam Loss Threshold Values

    Get PDF
    CERN's Large Hadron Collider will store an unprecedented amount of energy in its circulating beams. Beamloss monitoring (BLM) is, therefore, critical for machine protection. It must protect against the consequences (equipment damage, quenches of superconducting magnets) of excessive beam loss. About 4000 monitors will be installed at critical loss locations. Each monitor has 384 beam abort thresholds associated; for 12 integrated loss durations (40μ40\mus to 83 s) and 32 energies (450GeV to 7 TeV). Depending on monitor location, the thresholds vary by orders of magnitude. For simplification, the monitors are grouped in 'families'. Monitors of one family protect similar magnets against equivalent loss scenarios. Therefore, they are given the same thresholds. The start-up calibration of the BLM system is required to be within a factor of five in accuracy; and the final accuracy should be a factor of two. Simulations (backed-up by control measurements) determine the relation between the BLM signal, the deposited energy and the critical energy deposition for damage or quench (temperature of the coil). The paper presents the strategy of determining 1.5 million threshold values

    Stability Analysis of the LHC Cables for Transient Heat Depositions

    Get PDF
    The commissioning and the exploitation of the LHC require a good knowledge of the stability margins of the superconducting magnets with respect to beam induced heat depositions. Previous studies showed that simple numerical models are suitable to carry out stability calculations of multi-strands cables, and highlighted the relevance of the heat transfer model with the surrounding helium. In this paper we present a systematic scan of the stability margin of all types of LHC cables working at 1.9 Kagainst transient heat depositions. We specifically discuss the dependence of the stability margin on the parameters of the model, which provide an estimate of the uncertainty of the values quoted. The stability margin calculations have been performed using a zero-dimensional (0-D) numerical model, and a cooling model taking into account the relevant helium phases which may appear during a stability experiment: it includes Kapitza thermal resistance in superfluid He, boundary layer formation and heat transfer in He I, and considers the transition from nucleating boiling to film boiling during He gas formation

    Derived equivalence classification of the cluster-tilted algebras of Dynkin type E

    Full text link
    We obtain a complete derived equivalence classification of the cluster-tilted algebras of Dynkin type E. There are 67, 416, 1574 algebras in types E6, E7 and E8 which turn out to fall into 6, 14, 15 derived equivalence classes, respectively. This classification can be achieved computationally and we outline an algorithm which has been implemented to carry out this task. We also make the classification explicit by giving standard forms for each derived equivalence class as well as complete lists of the algebras contained in each class; as these lists are quite long they are provided as supplementary material to this paper. From a structural point of view the remarkable outcome of our classification is that two cluster-tilted algebras of Dynkin type E are derived equivalent if and only if their Cartan matrices represent equivalent bilinear forms over the integers which in turn happens if and only if the two algebras are connected by a sequence of "good" mutations. This is reminiscent of the derived equivalence classification of cluster-tilted algebras of Dynkin type A, but quite different from the situation in Dynkin type D where a far-reaching classification has been obtained using similar methods as in the present paper but some very subtle questions are still open.Comment: 19 pages. v4: completely rewritten version, to appear in Algebr. Represent. Theory. v3: Main theorem strengthened by including "good" mutations (cf. also arXiv:1001.4765). Minor editorial changes. v2: Third author added. Major revision. All questions left open in the earlier version by the first two authors are now settled in v2 and the derived equivalence classification is completed. arXiv admin note: some text overlap with arXiv:1012.466

    Direct antimicrobial susceptibility testing of positive blood cultures: A comparison of the accelerate Pheno™ and VITEK® 2 systems

    Get PDF
    Objectives To compare the performance and time-to-result (TTR) for antimicrobial susceptibility testing (AST) of positive blood cultures (PBC) using the Accelerate Pheno™ system (AXDX) and both a direct VITEK® 2 card inoculation workflow (DV2) and traditional FDA-approved VITEK® 2 workflow using subcultured isolates (V2). Methods Patient samples with monomicrobial Gram-negative rod bacteremia were tested on AXDX and DV2 in tandem, and compared to V2 AST results. Categorical agreement (CA) errors were adjudicated using broth microdilution. Instrumentation times and AST TTR were compared. Results AXDX and DV2 had a CA of 91.5% and 97.4%, respectively, compared to V2. Post-adjudication, AXDX, DV2, and V2 had CA of 94.7%, 95.7% and 96.5%, respectively. Instrument run times were 6.6 h, 9.4 h, and 9.2 h, and AST TTR were 8.9 h, 12.9 h and 35.5 h, respectively. Conclusions AXDX and DV2 AST is fast and reliable, which may have significant antimicrobial stewardship implications

    Thermo-hydraulic modeling of the ITER radial neutron camera

    Get PDF
    The ITER Radial Neutron Camera (RNC) is a diagnostic system designed as a multichannel detection system to measure the uncollided neutron flux from the plasma, generated in the tokamak vacuum vessel, providing information on neutron emissivity profile. The RNC consists of array of cylindrical collimators located in two diagnostic structures: the ex-port system and the in-port system. The in-port system, contains the diamond detectors which need a temperature protection. Feasibility study of the efficiency of the cooling system for the In-port Detector Modules of the RNC during baking process was the main goal of thermo-hydraulic numerical modeling. The paper presents the concept of the cooling system layout and the original way of integration of numerical thermo-hydraulic analyses of the in-port detector cassette. Due to the large extent of the detector cassette it is impossible to include all relevant thermal and hydraulic effects in one global model with sufficient level of details. Thus the modelling strategy is based on the concept of three stage modelling from details to global model. The presented paper includes results of numerical calculations made with ANSYS Fluent software in order to provide the final answer, including calculation of heat loads in the detector cassette from adjacent walls during baking and normal operation conditions

    New approach to the conceptual design of STUMM: A module dedicated to the monitoring of neutron and gamma radiation fields generated in IFMIF-DONES

    Get PDF
    International Fusion Materials Irradiation Facility — DEMOsingle bondOriented Neutron Source (IFMIF-DONES) is a planned powerful neutron source, which will generate an intense flux of neutrons (up to ∼1015n/s/cm2) with a fusion-relevant energy spectrum. It will be an accelerator source based on deuteron beam - lithium target reactions. The engineering design of IFMIF-DONES is elaborated in the frame of the Early Neutron Source work package of the EUROfusion consortium. The facility will be dedicated to the irradiation of suitable structural materials planned for the construction of future fusion reactors such as DEMO (Demonstration Fusion Power Plant). Start-up Monitoring Module (STUMM) is designed to monitor radiation and thermal conditions during the commissioning phase of IFMIF-DONES, characterize the produced neutron flux and validate neutronic modeling of the facility. The conceptual design of STUMM is prepared by a team of physicists and engineers from the Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN) and the National Centre for Nuclear Research (NCBJ), Poland. This paper presents the concept of STUMM, the proposed design of the module, and selected measuring systems

    Polymeric Functionalized Stationary Phase for Separation of Ionic Compounds by IC

    Get PDF
    Synthesis and properties are described of multilayered stationary phases containing quaternary amine functional groups used for the analysis of inorganic anions by ion chromatography. The bonded phases were characterized by elemental analysis, solid state 13C NMR spectroscopy and chromatographic methods. The surface of polyhydroxyethyl methacrylate (solid support) was coated with polymeric layers formed by condensation polymerization of primary amine with diepoxide. Each layer of the anion exchange stationary phase consisted of methylamine and 1,4-butanedioldiglycidyl ether copolymer. A series of stationary phases with different number of polymerized layers were tested. Separation of inorganic anions, such as F−, Cl−, NO2−, Br−, NO3−, were performed. Aqueous hydroxide, carbonate and bicarbonate solutions were used as mobile phases
    • …
    corecore