632 research outputs found
Anomalous Behavior near T_c and Synchronization of Andreev Reflection in Two-Dimensional Arrays of SNS Junctions
We have investigated low-temperature transport properties of two-dimensional
arrays of superconductor--normal-metal--superconductor (SNS) junctions. It has
been found that in two-dimensional arrays of SNS junctions (i) a change in the
energy spectrum within an interval of the order of the Thouless energy is
observed even when the thermal broadening far exceeds the Thouless energy for a
single SNS junction; (ii) the manifestation of the subharmonic energy gap
structure (SGS) with high harmonic numbers is possible even if the energy
relaxation length is smaller than that required for the realization of a
multiple Andreev reflection in a single SNS junction. These results point to
the synchronization of a great number of SNS junctions. A mechanism of the SGS
origin in two-dimensional arrays of SNS junctions, involving the processes of
conventional and crossed Andreev reflection, is proposed.Comment: 5 pages, 5 figure
The effects of a magnetic barrier and a nonmagnetic spacer in tunnel structures
The spin-polarized transport is investigated in a new type of magnetic tunnel
junction which consists of two ferromagnetic electrodes separated by a magnetic
barrier and a nonmagnetic metallic spacer. Based on the transfer matrix method
and the nearly-free-electron-approximation the dependence of the tunnel
magnetoresistance (TMR) and electron-spin polarization on the nonmagnetic layer
thickness and the applied bias voltage are studied theoretically. The TMR and
spin polarization show an oscillatory behavior as a function of the spacer
thickness and the bias voltage. The oscillations originate from the quantum
well states in the spacer, while the existence of the magnetic barrier gives
rise to a strong spin polarization and high values of the TMR. Our results may
be useful for the development of spin electronic devices based on coherent
transport.Comment: 15 pages, 5 figure
Josephson Frequency Singularity in the Noise of Normal Metal-Superconductor Junctions
A singularity at the Josephson frequency in the noise spectral density of a
disordered normal metal -- superconductor junction is predicted for bias
voltages below the superconducting gap. The non-stationary Aharonov-Bohm
effect, recently introduced for normal metals, is proposed as a tool for
detecting this singularity. In the presence of a harmonic external field, the
derivative of the noise with respect to the voltage bias reveals jumps when the
applied frequency is commensurate with the Josephson frequency associated with
this bias. The height of these jumps is non-monotonic in the amplitude of the
periodic field. The superconducting flux quantum enters this dependence.
Additional singularities in the frequency dependent noise are predicted above
gap.Comment: 4 pages, 2 figures, revised versio
Tunneling conductance in strained graphene-based superconductor: Effect of asymmetric Weyl-Dirac fermions
Based on the BTK theory, we investigate the tunneling conductance in a
uniaxially strained graphene-based normal metal (NG)/ barrier
(I)/superconductor (SG) junctions. In the present model, we assume that
depositing the conventional superconductor on the top of the uniaxially
strained graphene, normal graphene may turn to superconducting graphene with
the Cooper pairs formed by the asymmetric Weyl-Dirac electrons, the massless
fermions with direction-dependent velocity. The highly asymmetrical velocity,
vy/vx>>1, may be created by strain in the zigzag direction near the transition
point between gapless and gapped graphene. In the case of the highly
asymmetrical velocity, we find that the Andreev reflection strongly depends on
the direction and the current perpendicular to the direction of strain can flow
in the junction as if there was no barrier. Also, the current parallel to the
direction of strain anomalously oscillates as a function of the gate voltage
with very high frequency. Our predicted result is found as quite different from
the feature of the quasiparticle tunneling in the unstrained graphene-based
NG/I/SG conventional junction. This is because of the presence of the
direction-dependent-velocity quasiparticles in the highly strained graphene
system.Comment: 18 pages, 7 Figures; Eq.13 and 14 are correcte
Nonlinear Transport through NS Junctions due to Imperfect Andreev Reflection
We investigate a normal metal -- superconductor (point) contact in the limit
where the number of conducting channels in the metallic wire is reduced to few
channels. As the effective Fermi energy drops below the gap energy, a
conducting band with a width twice the Fermi energy is formed. Depending on the
mode of operation, the conduction band can be further squeezed, leading to
various non-linear effects in the current-voltage characteristics such as
current saturation, a N-shaped negative differential resistance, bistability,
and hysteresis.Comment: 4 pages, RevTeX, three postscript figure
Scaling Theory of Conduction Through a Normal-Superconductor Microbridge
The length dependence is computed of the resistance of a disordered
normal-metal wire attached to a superconductor. The scaling of the transmission
eigenvalue distribution with length is obtained exactly in the metallic limit,
by a transformation onto the isobaric flow of a two-dimensional ideal fluid.
The resistance has a minimum for lengths near l/Gamma, with l the mean free
path and Gamma the transmittance of the superconductor interface.Comment: 8 pages, REVTeX-3.0, 3 postscript figures appended as self-extracting
archive, INLO-PUB-94031
DC current through a superconducting two-barrier system
We analyze the influence of the structure within a SNS junction on the
multiple Andreev resonances in the subgap I-V characteristics. Coherent
interference processes and incoherent propagation in the normal region are
considered. The detailed geometry of the normal region where the voltage drops
in superconducting contacts can lead to observable effects in the conductance
at low voltages.Comment: 11 pages, including 7 postscript file
Annual sulfur cycle in a warm monomictic lake with sub-millimolar sulfate concentrations.
We studied the annual variability of the concentration and isotopic composition of main sulfur species and sulfide oxidation intermediates in the water column of monomictic fresh-water Lake Kinneret. Sulfate concentrations in the lake are <1 mM and similar to concentrations that are proposed to have existed in the Paleoproterozoic ocean. The main goal of this research was to explore biogeochemical constrains of sulfur cycling in the modern low-sulfate fresh-water lake and to identify which processes may be responsible for the isotopic composition of sulfur species in the Precambrian sedimentary rocks. RESULTS: At the deepest point of the lake, the sulfate inventory decreases by more than 20% between March and December due to microbial sulfate reduction leading to the buildup of hydrogen sulfide. During the initial stages of stratification, sulfur isotope fractionation between sulfate and hydrogen sulfide is low (11.6 ‰) and sulfur oxyanions (e.g. thiosulfate and sulfite) are the main products of the incomplete oxidation of hydrogen sulfide. During the stratification and at the beginning of the lake mixing (July-December), the inventory of hydrogen sulfide as well as of sulfide oxidation intermediates in the water column increases and is accompanied by an increase in sulfur isotope fractionation to 30 ± 4 ‰ in October. During the period of erosion of the chemocline, zero-valent sulfur prevails over sulfur oxyanions. In the terminal period of the mixing of the water column (January), the concentration of hydrogen sulfide decreases, the inventory of sulfide oxidation intermediates increases, and sulfur isotope fractionation decreases to 20 ± 2 ‰. CONCLUSIONS: Sulfide oxidation intermediates are present in the water column of Lake Kinneret at all stages of stratification with significant increase during the mixing of the water column. Hydrogen sulfide inventory in the water column increases from March to December, and sharply decreases during the lake mixis in January. Sulfur isotope fractionation between sulfate and hydrogen sulfide as well as concentrations of sulfide oxidation intermediates can be explained either by microbial sulfate reduction alone or by microbial sulfate reduction combined with microbial disproportionation of sulfide oxidation intermediates. Our study of sulfur cycle in Lake Kinneret may be useful for understanding the range of biogeochemical processes in low sulfate oceans over Earth history
Competition between electronic cooling and Andreev dissipation in a superconducting micro-cooler
We discuss very low temperature experiments on superconducting micro-coolers
made of a double Normal metal - Insulator - Superconductor junction. We
investigate with a high resolution the differential conductance of the
micro-cooler as well as of additional probe junctions. There is an explicit
crossover between the single quasi-particle current and the phase-coherent
Andreev current. We establish a thermal model by considering the thermal
contribution due to the Andreev current. The related increase of the electron
temperature is discussed, including the influence of several parameters like
the phase-coherence length or the tunnel junction transparency
Temperature and Field Dependence of the Energy Gap of MgB2/Pb planar junction
We have constructed MgB2/Pb planar junctions for both temperature and field
dependence studies. Our results show that the small gap is a true bulk property
of MgB2 superconductor, not due to surface effects. The temperature dependence
of the energy gap manifests a nearly BCS-like behavior. Analysis of the effect
of magnetic field on junctions suggests that the energy gap of MgB2 depends
non-linearly on the magnetic field. Moreover, MgB2 has an upper critical field
of 15 T, in agreement with some reported Hc2 from transport measurements.Comment: 5 pages, 5 figures. Submitted to Phys. Rev.
- …
