81 research outputs found

    Dry reforming of methane over single-atom Rh/Al<sub>2</sub>O<sub>3</sub> catalysts prepared by exsolution

    Get PDF
    Single-atom catalysts often show exceptionally high performance per metal loading. However, the isolated atom sites tend to agglomerate during preparation and/or high-temperature reaction. Here we show that in the case of Rh/Al2O3 this deactivation can be prevented by dissolution/exsolution of metal atoms into/from the support. We design and synthesise a series of single-atom catalysts, characterise them and study the impact of exsolution in the dry reforming of methane at 700-900 °C. The catalysts' performance increases with increasing reaction time, as the rhodium atoms migrate from the subsurface to the surface. Although the oxidation state of rhodium changes from Rh(iii) to Rh(ii) or Rh(0) during catalysis, atom migration is the main factor affecting catalyst performance. The implications of these results for preparing real-life catalysts are discussed.</p

    Understanding the Oxidative Properties of Nickel Oxyhydroxide in Alcohol Oxidation Reactions

    Get PDF
    The NiOOH electrode is commonly used in electrochemical alcohol oxidations. Yet understanding the reaction mechanism is far from trivial. In many cases, the difficulty lies in the decoupling of the overlapping influence of chemical and electrochemical factors that not only govern the reaction pathway but also the crystal structure of the in situ formed oxyhydroxide. Here, we use a different approach to understand this system: we start with synthesizing pure forms of the two oxyhydroxides, β-NiOOH and γ-NiOOH. Then, using the oxidative dehydrogenation of three typical alcohols as the model reactions, we examine the reactivity and selectivity of each oxyhydroxide. While solvent has a clear effect on the reaction rate of β-NiOOH, the observed selectivity was found to be unaffected and remained over 95% for the dehydrogenation of both primary and secondary alcohols to aldehydes and ketones, respectively. Yet, high concentration of OH- in aqueous solvent promoted the preferential conversion of benzyl alcohol to benzoic acid. Thus, the formation of carboxylic compounds in the electrochemical oxidation without alkaline electrolyte is more likely to follow the direct electrochemical oxidation pathway. Overoxidation of NiOOH from the β- to γ-phase will affect the selectivity but not the reactivity with a sustained &gt;95% conversion. The mechanistic examinations comprising kinetic isotope effects, Hammett analysis, and spin trapping studies reveal that benzyl alcohol is oxidatively dehydrogenated to benzaldehyde via two consecutive hydrogen atom transfer steps. This work offers the unique oxidative and catalytic properties of NiOOH in alcohol oxidation reactions, shedding light on the mechanistic understanding of the electrochemical alcohol conversion using NiOOH-based electrodes

    The influence of corrosion on diamond-like carbon topography and friction at the nanoscale

    Get PDF
    The influence of corrosion upon the nanoscale topography and friction response of a hydrogenated amorphous carbon film (a-C:H) was investigated. Electrochemical atomic force microscopy was used to characterise topographical changes to the coating at two oxidative potentials. Corrosion of the coating at 1.5 V (corrosion rate 0.5 nm h−1) resulted in no changes to the nanoscale topography; whereas corrosion at 2.5 V (corrosion rate 26.4 nm h−1) caused the root mean square roughness of the a-C:H film topography to decrease, but the local fine-scale irregularity or ‘jaggedness’ of the surface to increase. X-ray photoelectron spectroscopy revealed that corrosion at both potentials oxidised the a-C:H surface to form alcohol, carbonyl and carboxyl groups. Lateral force microscopy and adhesion force measurements showed that both the friction force and surface adhesion of the coating increased upon corrosion. The outcome was attributed to the surface oxidation that had occurred at both oxidative potentials, resulting in several potential mechanisms including increased attractive intermolecular interactions and capillary forces. The highest friction coefficient was observed for the a-C:H film corroded at 2.5 V, and identified as a consequence of the jagged surface topography promoting an interlocking friction mechanism

    Differential effects of tactile high- and low-frequency stimulation on tactile discrimination in human subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long-term potentiation (LTP) and long-term depression (LTD) play important roles in mediating activity-dependent changes in synaptic transmission and are believed to be crucial mechanisms underlying learning and cortical plasticity. In human subjects, however, the lack of adequate input stimuli for the induction of LTP and LTD makes it difficult to study directly the impact of such protocols on behavior.</p> <p>Results</p> <p>Using tactile high- and low-frequency stimulation protocols in humans, we explored the potential of such protocols for the induction of perceptual changes. We delivered tactile high-frequency and low-frequency stimuli (t-HFS, t-LFS) to skin sites of approximately 50 mm<sup>2 </sup>on the tip of the index finger. As assessed by 2-point discrimination, we demonstrate that 20 minutes of t-HFS improved tactile discrimination, while t-LFS impaired performance. T-HFS-effects were stable for at least 24 hours whereas t-LFS-induced changes recovered faster. While t-HFS changes were spatially very specific with no changes on the neighboring fingers, impaired tactile performance after t-LFS was also observed on the right middle-finger. A central finding was that for both t-LFS and t-HFS perceptual changes were dependent on the size of the stimulated skin area. No changes were observed when the stimulated area was very small (< 1 mm<sup>2</sup>) indicating special requirements for spatial summation.</p> <p>Conclusion</p> <p>Our results demonstrate differential effects of such protocols in a frequency specific manner that might be related to LTP- and LTD-like changes in human subjects.</p

    The number of flags in finite vector spaces: Asymptotic normality and Mahonian statistics

    Full text link
    We study the generalized Galois numbers which count flags of length r in N-dimensional vector spaces over finite fields. We prove that the coefficients of those polynomials are asymptotically Gaussian normally distributed as N becomes large. Furthermore, we interpret the generalized Galois numbers as weighted inversion statistics on the descent classes of the symmetric group on N elements and identify their asymptotic limit as the Mahonian inversion statistic when r approaches infinity. Finally, we apply our statements to derive further statistical aspects of generalized Rogers-Szegoe polynomials, re-interpret the asymptotic behavior of linear q-ary codes and characters of the symmetric group acting on subspaces over finite fields, and discuss implications for affine Demazure modules and joint probability generating functions of descent-inversion statistics.Comment: 19 pages. Corrected proof of asymptotic normality (Theorem 3.5). Previous Proposition 3.3 is fals
    corecore