2,620 research outputs found

    Soot formation and burnout in flames

    Get PDF
    The amount of soot formed when burning a benzene/hexane mixture in a turbulent combustor was examined. Soot concentration profiles in the same combustor for kerosene fuel are given. The chemistry of the formation of soot precursors, the nucleation, growth and subsequent burnout of soot particles, and the effect of mixing on the previous steps were considered

    Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard

    Full text link
    This article presents experimental results on properties of waves propagating in an unbounded and a bounded photonic crystal consisting of metallic cylinders which are arranged in a triangular lattice. First, we present transmission measurements of plane waves traversing a photonic crystal. The experiments are performed in the vicinity of a Dirac point, i.e., an isolated conical singularity of the photonic band structure. There, the transmission shows a pseudodiffusive 1/L dependence, with LL being the thickness of the crystal, a phenomenon also observed in graphene. Second, eigenmode intensity distributions measured in a microwave analog of a relativistic Dirac billiard, a rectangular microwave billiard that contains a photonic crystal, are discussed. Close to the Dirac point states have been detected which are localized at the straight edge of the photonic crystal corresponding to a zigzag edge in graphene

    Application of a trace formula to the spectra of flat three-dimensional dielectric resonators

    Full text link
    The length spectra of flat three-dimensional dielectric resonators of circular shape were determined from a microwave experiment. They were compared to a semiclassical trace formula obtained within a two-dimensional model based on the effective index of refraction approximation and a good agreement was found. It was necessary to take into account the dispersion of the effective index of refraction for the two-dimensional approximation. Furthermore, small deviations between the experimental length spectrum and the trace formula prediction were attributed to the systematic error of the effective index of refraction approximation. In summary, the methods developed in this article enable the application of the trace formula for two-dimensional dielectric resonators also to realistic, flat three-dimensional dielectric microcavities and -lasers, allowing for the interpretation of their spectra in terms of classical periodic orbits.Comment: 13 pages, 12 figures, 1 tabl

    Experimental Observation of Localized Modes in a Dielectric Square Resonator

    Full text link
    We investigated the frequency spectra and field distributions of a dielectric square resonator in a microwave experiment. Since such systems cannot be treated analytically, the experimental studies of their properties are indispensable. The momentum representation of the measured field distributions shows that all resonant modes are localized on specific classical tori of the square billiard. Based on these observations a semiclassical model was developed. It shows excellent agreement with all but a single class of measured field distributions that will be treated separately.Comment: 6 pages, 5 figures, 1 tabl

    The extensive nature of group quality

    Get PDF
    We consider groups of interacting nodes engaged in an activity as many-body, complex systems and analyse their cooperative behaviour from a mean-field point of view. We show that inter-nodal interactions rather than accumulated individual node strengths dominate the quality of group activity, and give rise to phenomena akin to phase transitions, where the extensive relationship between group quality and quantity reduces. The theory is tested using empirical data on quantity and quality of scientific research groups, for which critical masses are determined.Comment: 6 pages, 6 figures containing 13 plots. Very minor changes to coincide with published versio

    Scattering Experiments with Microwave Billiards at an Exceptional Point under Broken Time Reversal Invariance

    Full text link
    Scattering experiments with microwave cavities were performed and the effects of broken time-reversal invariance (TRI), induced by means of a magnetized ferrite placed inside the cavity, on an isolated doublet of nearly degenerate resonances were investigated. All elements of the effective Hamiltonian of this two-level system were extracted. As a function of two experimental parameters, the doublet and also the associated eigenvectors could be tuned to coalesce at a so-called exceptional point (EP). The behavior of the eigenvalues and eigenvectors when encircling the EP in parameter space was studied, including the geometric amplitude that builds up in the case of broken TRI. A one-dimensional subspace of parameters was found where the differences of the eigenvalues are either real or purely imaginary. There, the Hamiltonians were found PT-invariant under the combined operation of parity (P) and time reversal (T) in a generalized sense. The EP is the point of transition between both regions. There a spontaneous breaking of PT occurs
    • …
    corecore