131 research outputs found

    Critical issues in ionospheric data quality and implications for scientific studies

    Get PDF
    Ionospheric data are valuable records of the behavior of the ionosphere, solar activity, and the entire Sun-Earth system. The data are critical for both societally important services and scientific investigations of upper atmospheric variability. This work investigates some of the difficulties and pitfalls in maintaining long-term records of geophysical measurements. This investigation focuses on the ionospheric parameters contained in the historical data sets within the National Oceanic and Atmospheric Administration National Geophysical Data Center and Space Physics Interactive Data Resource databases. These archives include data from approximately 100 ionosonde stations worldwide, beginning in the early 1940s. Our study focuses on the quality and consistency of ionosonde data accessible via the primary Space Physics Interactive Data Resource node located within the National Oceanic and Atmospheric Administration National Geophysical Data Center and the World Data Center for Solar-Terrestrial Physics located in Boulder, Colorado. We find that, although the Space Physics Interactive Data Resource archives contained an impressive amount of high-quality data, specific problems existed involving missing and noncontiguous data sets, long-term variations or changes in methodologies and analysis procedures used, and incomplete documentation. The important lessons learned from this investigation are that the data incorporated into an archive must have clear traceability back to the primary source, including scientific validation by the contributors, and that the historical records must have associated metadata that describe relevant nuances in the observations. Although this report only focuses on historical ionosonde data in National Oceanic and Atmospheric Administration databases, we feel that these findings have general applicability to environmental scientists interested in using long-term geophysical data sets for climate and global change research.Peer ReviewedPostprint (published version

    Electon density profiles of the topside ionosphere

    Get PDF
    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h m F 2 to ~ 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350 000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status. html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling ~ 70% of the ionograms. An «editing process» is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle

    Pioneer 10 Doppler data analysis: disentangling periodic and secular anomalies

    Full text link
    This paper reports the results of an analysis of the Doppler tracking data of Pioneer probes which did show an anomalous behaviour. A software has been developed for the sake of performing a data analysis as independent as possible from that of J. Anderson et al. \citep{anderson}, using the same data set. A first output of this new analysis is a confirmation of the existence of a secular anomaly with an amplitude about 0.8 nms2^{-2} compatible with that reported by Anderson et al. A second output is the study of periodic variations of the anomaly, which we characterize as functions of the azimuthal angle φ\varphi defined by the directions Sun-Earth Antenna and Sun-Pioneer. An improved fit is obtained with periodic variations written as the sum of a secular acceleration and two sinusoids of the angles φ\varphi and 2φ2\varphi. The tests which have been performed for assessing the robustness of these results are presented.Comment: 13 pages, 6 figures, minor amendment

    CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations

    Get PDF
    In an effort to quantitatively assess the current capabilities of Ionosphere/Thermosphere (IT) models, an IT model validation study using metrics was performed. This study is a main part of the CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge, which was initiated at the CEDAR workshop in 2009 to better comprehend strengths and weaknesses of models in predicting the IT system, and to trace improvements in ionospheric/thermospheric specification and forecast. For the challenge, two strong geomagnetic storms, four moderate storms, and three quiet time intervals were selected. For the selected events, we obtained four scores (i.e., RMS error, prediction efficiency, ratio of the maximum change in amplitudes, and ratio of the maximum amplitudes) to compare the performance of models in reproducing the selected physical parameters such as vertical drifts, electron and neutral densities, NmF2, and hmF2. In this paper, we present the results from comparing modeled values against space-based measurements including NmF2 and hmF2 from the CHAMP and COSMIC satellites, and electron and neutral densities at the CHAMP satellite locations. It is found that the accuracy of models varies with the metrics used, latitude and geomagnetic activity level

    Ionospheric Modelling using GPS to Calibrate the MWA. II : Regional ionospheric modelling using GPS and GLONASS to estimate ionospheric gradients

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Publications of the Astronomical Society of Australia (PASA), after peer review and technical editing by the publisher. The version of record is available on line at https://doi.org/10.1017/pasa.2016.22 COPYRIGHT: © Astronomical Society of Australia 2016.We estimate spatial gradients in the ionosphere using the Global Positioning System (GPS) and GLONASS (Russian global navigation system) observations, utilising data from multiple GPS stations in the vicinity of Murchison Radio-astronomy Observatory (MRO). In previous work the ionosphere was characterised using a single-station to model the ionosphere as a single layer of fixed height and this was compared with ionospheric data derived from radio astronomy observations obtained from the Murchison Widefield Array (MWA). Having made improvements to our data quality (via cycle slip detection and repair) and incorporating data from the GLONASS system, we now present a multi-station approach. These two developments significantly improve our modelling of the ionosphere. We also explore the effects of a variable-height model. We conclude that modelling the small-scale features in the ionosphere that have been observed with the MWA will require a much denser network of Global Navigation Satellite System (GNSS) stations than is currently available at the MRO.Peer reviewe

    CEDARâ GEM Challenge for Systematic Assessment of Ionosphere/Thermosphere Models in Predicting TEC During the 2006 December Storm Event

    Full text link
    In order to assess current modeling capability of reproducing storm impacts on total electron content (TEC), we considered quantities such as TEC, TEC changes compared to quiet time values, and the maximum value of the TEC and TEC changes during a storm. We compared the quantities obtained from ionospheric models against groundâ based GPS TEC measurements during the 2006 AGU storm event (14â 15 December 2006) in the selected eight longitude sectors. We used 15 simulations obtained from eight ionospheric models, including empirical, physicsâ based, coupled ionosphereâ thermosphere, and data assimilation models. To quantitatively evaluate performance of the models in TEC prediction during the storm, we calculated skill scores such as RMS error, Normalized RMS error (NRMSE), ratio of the modeled to observed maximum increase (Yield), and the difference between the modeled peak time and observed peak time. Furthermore, to investigate latitudinal dependence of the performance of the models, the skill scores were calculated for five latitude regions. Our study shows that RMSE of TEC and TEC changes of the model simulations range from about 3 TECU (total electron content unit, 1 TECU = 1016 el mâ 2) (in high latitudes) to about 13 TECU (in low latitudes), which is larger than latitudinal average GPS TEC error of about 2 TECU. Most model simulations predict TEC better than TEC changes in terms of NRMSE and the difference in peak time, while the opposite holds true in terms of Yield. Model performance strongly depends on the quantities considered, the type of metrics used, and the latitude considered.Key PointsTEC and TEC changes during a storm predicted by ionosphere models were compared with groundâ based GPS TEC measurementsSkill scores (e.g., RMSE, NRMSE, and Yields) were calculated for five latitude regions in the selected eight longitude sectorsModel performance strongly depends on the quantities considered, the type of metrics used, and the latitude consideredPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139943/1/swe20516.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139943/2/swe20516_am.pd
    corecore