21 research outputs found

    X-ray absorption study of the ferromagnetic Cu moment at the YBa2Cu3O7/La2/3Ca1/3MnO3\mathbf{{YBa_2Cu_3O_7}/{La_{2/3}Ca_{1/3}MnO_3}} interface and the variation of its exchange interaction with the Mn moment

    Full text link
    With x-ray absorption spectroscopy and polarized neutron reflectometry we studied how the magnetic proximity effect at the interface between the cuprate high-TCT_C superconductor YBa2Cu3O7\mathrm{YBa_2Cu_3O_7} (YBCO) and the ferromagnet La2/3Ca1/3MnO3\mathrm{La_{2/3}Ca_{1/3}MnO_3} (LCMO) is related to the electronic and magnetic properties of the LCMO layers. In particular, we explored how the magnitude of the ferromagnetic Cu moment on the YBCO side depends on the strength of the antiferromagnetic (AF) exchange coupling with the Mn moment on the LCMO side. We found that the Cu moment remains sizeable if the AF coupling with the Mn moments is strongly reduced or even entirely suppressed. The ferromagnetic order of the Cu moments thus seems to be intrinsic to the interfacial CuO2_2 planes and related to a weakly ferromagnetic intra-planar exchange interaction. The latter is discussed in terms of the partial occupation of the Cu 3d3z2r23d_{3z^2-r^2} orbitals, which occurs in the context of the so-called orbital reconstruction of the interfacial Cu ions

    Klizni valovi spinske gustoce: proučavanje strujnog šuma, ovisnosti o magnetskom polju i Hallovog otpora

    Get PDF
    We have studied the current-voltage characteristics of the (TMTSF)2PF6 in the spin density state (SDW), and in zero and finite external magnetic field. For the oscillating part of the nonlinear voltage response to the applied DC electric field, the fundamental frequency distribution (as a function of this field) and a nonlinear relation between the frequency and the SDW current reveal the growth of parallel conduction channels characterized by lower velocities and larger cross-sections. The number of fundamental frequencies, their amplitude and the level of low-frequency noise as well as the depinning behaviour provide a consistent indication of the sample inhomogeneities and associated local field variations, and might be well understood within the framework of the phase slippage model. The increase of the threshold electric field with the applied magnetic filed can be explained by the Bjeli-Maki theory, if the imperfect nesting is taken into account. Finally, the electric-field dependence of the Hall resistivity is consistent with the sliding mechanism of the SDW conduction.Proučavali smo karakteristike napon – struja materijala (TMTSF)2PF6 u stanju valova spinske gustoće (SDW). Za oscilatorni dio nelinearnog naponskog odziva na istosmjerno električno polje, osnovna frekventna raspodjela (kao funkcija tog polja) i nelinearan odnos frekvencije i SDW struje pokazuju rast usporednih kanala vođenja označenih manjim brzinama i većim udarnim presjecima. Broj osnovnih frekvencija, njihove amplitude i razina niskofrekventnog šuma, kao i otkočno ponašanje sustavno pokazuju na nehomogenosti uzorka i pridružene varijacije lokalnog polja, i mogu se shvatiti u okviru modela klizne faze. Rast praga električnog polja s magnetskim poljem može se protumačiti Bjeliš-Makijevom teorijom, ako se uzme u obzir ugniježdenje. Konačno, nalazimo da je ovisnost Hallovog otpora o električnom polju u skladu s kliznim mehanizmom SDW vođenja struje

    Colossal dielectric constants in transition-metal oxides

    Get PDF
    Many transition-metal oxides show very large ("colossal") magnitudes of the dielectric constant and thus have immense potential for applications in modern microelectronics and for the development of new capacitance-based energy-storage devices. In the present work, we thoroughly discuss the mechanisms that can lead to colossal values of the dielectric constant, especially emphasising effects generated by external and internal interfaces, including electronic phase separation. In addition, we provide a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which is today's most investigated material with colossal dielectric constant. Also a variety of further transition-metal oxides with large dielectric constants are treated in detail, among them the system La2-xSrxNiO4 where electronic phase separation may play a role in the generation of a colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
    corecore