2,151 research outputs found

    Relativistic corrections to the long range interaction between closed shell atoms

    Full text link
    The complete O(α2)O(\alpha^2) correction to the long range interaction between neutral closed shell atoms is obtained, the relation to the asymptotic expansion of the known short range interaction at the atomic scale is presented and a general interaction potential which is valid in the whole range of the inter atomic distances is constructed.Comment: 9 pages, accepted for Phys. Rev.

    Relativistic, QED, and finite nuclear mass corrections for low-lying states of Li and Be+^+

    Full text link
    Accurate results for nonrelativistic energy, relativistic, QED, and finite nuclear mass corrections are obtained for 21S1/22^1S_{1/2}, 31S1/23^1S_{1/2} and 21P1/22^1P_{1/2} states of the Li atom and Be+^+ ion. Our computational approach uses the Hylleraas basis set with the analytic integration and recursion relations. From comparison of experimental results for the isotope shifts to theoretical predictions including nuclear polarizabilities, we obtain nuclear charge radii for Li and Be isotopes.Comment: 19 pages, 8 tables, Phys. Rev. A in prin

    The Determination of Nuclear Level Densities from Experimental Information -

    Get PDF
    A novel Information Theory based method for determining the density of states from prior information is presented. The energy dependence of the density of states is determined from the observed number of states per energy interval and model calculations suggest that the method is sufficiently reliable to calculate the thermal properties of nuclei over a reasonable temperature range.Comment: 7 pages + 6 eps figures, REVTEX 3.

    Dispersive estimates for Schr\"odinger operators with point interactions in R3\mathbb{R}^3

    Full text link
    The study of dispersive properties of Schr\"odinger operators with point interactions is a fundamental tool for understanding the behavior of many body quantum systems interacting with very short range potential, whose dynamics can be approximated by non linear Schr\"odinger equations with singular interactions. In this work we proved that, in the case of one point interaction in R3\mathbb{R}^3, the perturbed Laplacian satisfies the same LpLqL^p-L^q estimates of the free Laplacian in the smaller regime q[2,3)q\in[2,3). These estimates are implied by a recent result concerning the LpL^p boundedness of the wave operators for the perturbed Laplacian. Our approach, however, is more direct and relatively simple, and could potentially be useful to prove optimal weighted estimates also in the regime q3q\geq 3.Comment: To appear on: "Advances in Quantum Mechanics: Contemporary Trends and Open Problems", G. Dell'Antonio and A. Michelangeli eds., Springer-INdAM series 201

    Equations of motion approach to the spin-1/2 Ising model on the Bethe lattice

    Full text link
    We exactly solve the ferromagnetic spin-1/2 Ising model on the Bethe lattice in the presence of an external magnetic field by means of the equations of motion method within the Green's function formalism. In particular, such an approach is applied to an isomorphic model of localized Fermi particles interacting via an intersite Coulomb interaction. A complete set of eigenoperators is found together with the corresponding eigenvalues. The Green's functions and the correlation functions are written in terms of a finite set of parameters to be self-consistently determined. A procedure is developed, that allows us to exactly fix the unknown parameters in the case of a Bethe lattice with any coordination number z. Non-local correlation functions up to four points are also provided together with a study of the relevant thermodynamic quantities.Comment: RevTex, 29 pages, 13 figure

    The Dynamics of the One-Dimensional Delta-Function Bose Gas

    Full text link
    We give a method to solve the time-dependent Schroedinger equation for a system of one-dimensional bosons interacting via a repulsive delta function potential. The method uses the ideas of Bethe Ansatz but does not use the spectral theory of the associated Hamiltonian

    Quasiclassical calculations of BBR-induced depopulation rates and effective lifetimes of Rydberg nS, nP and nD alkali-metal atoms with n < 80

    Full text link
    Rates of depopulation by blackbody radiation (BBR) and effective lifetimes of alkali-metal \textit{nS}, \textit{n}P and \textit{nD} Rydberg states have been calculated in a wide range of principal quantum numbers n80n \le 80 at the ambient temperatures of 77, 300 and 600 K. Quasiclassical formulas were used to calculate the radial matrix elements of the dipole transitions from Rydberg states. Good agreement of our numerical results with the available theoretical and experimental data has been found. We have also obtained simple analytical formulas for estimates of effective lifetimes and BBR-induced depopulation rates, which well agree with the numerical data.Comment: 12 pages, 6 figures, 8 tables. Typo in Eq.16 corrected in V2. Typos in Eq.5 and Eq.9 corrected in V3. Error in calculation of Rb nP_{3/2} effective lifetimes corrected in V4: see new data in Table II and Table VII, Erratum to be published in PR

    Foundation of an analytical proton beamlet model for inclusion in a general proton dose calculation system

    Full text link
    We have developed a model for proton depth dose and lateral distributions based on Monte Carlo calculations (GEANT4) and an integration procedure of the Bethe-Bloch equation (BBE). The model accounts for the transport of primary and secondary protons, the creation of recoil protons and heavy recoil nuclei as well as lateral scattering of these contributions. The buildup, which is experimentally observed in higher energy depth dose curves, is modeled by inclusion of two different origins: 1. Secondary reaction protons with a contribution of ca. 65 % of the buildup (for monoenergetic protons). 2. Landau tails as well as Gaussian type of fluctuations for range straggling effects. All parameters of the model for initially monoenergetic proton beams have been obtained from Monte Carlo calculations or checked by them. Furthermore, there are a few parameters, which can be obtained by fitting the model to measured depth dose curves in order to describe individual characteristics of the beamline - the most important being the initial energy spread. We find that the free parameters of the depth dose model can be predicted for any intermediate energy from a couple of measured curves.Comment: Eclipse implementatio

    Ultrafast effective multi-level atom method for primordial hydrogen recombination

    Get PDF
    Cosmological hydrogen recombination has recently been the subject of renewed attention because of its importance for predicting the power spectrum of cosmic microwave background anisotropies. It has become clear that it is necessary to account for a large number n >~ 100 of energy shells of the hydrogen atom, separately following the angular momentum substates in order to obtain sufficiently accurate recombination histories. However, the multi-level atom codes that follow the populations of all these levels are computationally expensive, limiting recent analyses to only a few points in parameter space. In this paper, we present a new method for solving the multi-level atom recombination problem, which splits the problem into a computationally expensive atomic physics component that is independent of the cosmology, and an ultrafast cosmological evolution component. The atomic physics component follows the network of bound-bound and bound-free transitions among excited states and computes the resulting effective transition rates for the small set of "interface" states radiatively connected to the ground state. The cosmological evolution component only follows the populations of the interface states. By pre-tabulating the effective rates, we can reduce the recurring cost of multi-level atom calculations by more than 5 orders of magnitude. The resulting code is fast enough for inclusion in Markov Chain Monte Carlo parameter estimation algorithms. It does not yet include the radiative transfer or high-n two-photon processes considered in some recent papers. Further work on analytic treatments for these effects will be required in order to produce a recombination code usable for Planck data analysis.Comment: Version accepted by Phys. Rev. D. Proof of equivalence of effective and standard MLA methods moved to the main text. Some rewording

    Relativistic Reduced-Mass and Recoil Corrections to Vacuum Polarization in Muonic Hydrogen, Muonic Deuterium and Muonic Helium Ions

    Get PDF
    The reduced-mass dependence of relativistic and radiative effects in simple muonic bound systems is investigated. The spin-dependent nuclear recoil correction of order (Zalpha)^4 mu^3/m_N^2 is evaluated for muonic hydrogen and deuterium, and muonic helium ions (mu is the reduced mass and m_N is the nuclear mass). Relativistic corrections to vacuum polarization of order alpha (Zalpha)^4 mu are calculated, with a full account of the reduced-mass dependence. The results shift theoretical predictions. The radiative-recoil correction to vacuum polarization of order alpha (Z\alpha)^5 ln^2(Zalpha) mu^2/m_N is obtained in leading logarithmic approximation. The results emphasize the need for a unified treatment of relativistic corrections to vacuum polarization in muonic hydrogen, muonic deuterium and muonic helium ions, where the mass ratio of the orbiting particle to the nuclear mass is larger than the fine-structure constant.Comment: 6 pages; RevTe
    corecore