7,049 research outputs found
Quantum-mechanical machinery for rational decision-making in classical guessing game
In quantum game theory, one of the most intriguing and important questions
is, "Is it possible to get quantum advantages without any modification of the
classical game?" The answer to this question so far has largely been negative.
So far, it has usually been thought that a change of the classical game setting
appears to be unavoidable for getting the quantum advantages. However, we give
an affirmative answer here, focusing on the decision-making process (we call
'reasoning') to generate the best strategy, which may occur internally, e.g.,
in the player's brain. To show this, we consider a classical guessing game. We
then define a one-player reasoning problem in the context of the
decision-making theory, where the machinery processes are designed to simulate
classical and quantum reasoning. In such settings, we present a scenario where
a rational player is able to make better use of his/her weak preferences due to
quantum reasoning, without any altering or resetting of the classically defined
game. We also argue in further analysis that the quantum reasoning may make the
player fail, and even make the situation worse, due to any inappropriate
preferences.Comment: 9 pages, 10 figures, The scenario is more improve
Effective potential for composite operators and for an auxiliary scalar field in a Nambu-Jona-Lasinio model
We derive the effective potentials for composite operators in a
Nambu-Jona-Lasinio (NJL) model at zero and finite temperature and show that in
each case they are equivalent to the corresponding effective potentials based
on an auxiliary scalar field. The both effective potentials could lead to the
same possible spontaneous breaking and restoration of symmetries including
chiral symmetry if the momentum cutoff in the loop integrals is large enough,
and can be transformed to each other when the Schwinger-Dyson (SD) equation of
the dynamical fermion mass from the fermion-antifermion vacuum (or thermal)
condensates is used. The results also generally indicate that two effective
potentials with the same single order parameter but rather different
mathematical expressions can still be considered physically equivalent if the
SD equation corresponding to the extreme value conditions of the two potentials
have the same form.Comment: 7 pages, no figur
Crystalline free energies of micelles of diblock copolymer solutions
We report a characterization of the relative stability and structural
behavior of various micellar crystals of an athermal model of AB-diblock
copolymers in solution. We adopt a previously devel- oped coarse-graining
representation of the chains which maps each copolymer on a soft dumbbell.
Thanks to this strong reduction of degrees of freedom, we are able to
investigate large aggregated systems, and for a specific length ratio of the
blocks f = MA/(MA + MB) = 0.6, to locate the order-disorder transition of the
system of micelles. Above the transition, mechanical and thermal properties are
found to depend on the number of particles per lattice site in the simulation
box, and the application of a recent methodology for multiple occupancy
crystals (B.M. Mladek et al., Phys. Rev. Lett. 99, 235702 (2007)) is necessary
to correctly define the equilibrium state. Within this scheme we have performed
free energy calculations at two reduced density {\rho}/{\rho}\ast = 4,5 and for
several cubic structures as FCC,BCC,A15. At both densities, the BCC symmetry is
found to correspond to the minimum of the unconstrained free energy, that is to
the stable symmetry among the few considered, while the A15 structure is almost
degenerate, indicating that the present sys- tem prefers to crystallize in less
packed structures. At {\rho}/{\rho}\ast = 4 close to melting, the Lindemann
ratio is fairly high (~ 0.29) and the concentration of vacancies is roughly 6%.
At {\rho}/{\rho}\ast = 5 the mechanical stability of the stable BCC structure
increases and the concentration of vacancies ac- cordingly decreases. The ratio
of the corona layer thickness to the core radius is found to be in good
agreement with experimental data for poly(styrene-b-isoprene)(22-12) in
isoprene selective solvent which is also reported to crystallize in the BCC
structure
Bubble generation in a twisted and bent DNA-like model
The DNA molecule is modeled by a parabola embedded chain with long-range
interactions between twisted base pair dipoles. A mechanism for bubble
generation is presented and investigated in two different configurations. Using
random normally distributed initial conditions to simulate thermal
fluctuations, a relationship between bubble generation, twist and curvature is
established. An analytical approach supports the numerical results.Comment: 7 pages, 8 figures. Accepted for Phys. Rev. E (in press
Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber
A pure silica photonic crystal fiber with a group velocity dispersion
() of 4 ps/km at 1.55 m and less than 7 ps/km from 1.32
m to the zero dispersion wavelength (ZDW) 1.80 m was designed and
fabricated. The dispersion of the fiber was measured experimentally and found
to agree with the fiber design, which also provides low loss below 1.83 m
due to eight outer rings with increased hole diameter. The fiber was pumped
with a 1.55 m, 125 fs laser and, at the maximum in-coupled peak power
(P) of 9 kW, a 1.341.82 m low-noise spectrum with a relative
intensity noise below 2.2\% was measured. The numerical modeling agreed very
well with the experiments and showed that P could be increased to 26 kW
before noise from solitons above the ZDW started to influence the spectrum by
pushing high-noise dispersive waves through the spectrum
- …
