7,049 research outputs found

    Quantum-mechanical machinery for rational decision-making in classical guessing game

    Full text link
    In quantum game theory, one of the most intriguing and important questions is, "Is it possible to get quantum advantages without any modification of the classical game?" The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call 'reasoning') to generate the best strategy, which may occur internally, e.g., in the player's brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.Comment: 9 pages, 10 figures, The scenario is more improve

    Effective potential for composite operators and for an auxiliary scalar field in a Nambu-Jona-Lasinio model

    Full text link
    We derive the effective potentials for composite operators in a Nambu-Jona-Lasinio (NJL) model at zero and finite temperature and show that in each case they are equivalent to the corresponding effective potentials based on an auxiliary scalar field. The both effective potentials could lead to the same possible spontaneous breaking and restoration of symmetries including chiral symmetry if the momentum cutoff in the loop integrals is large enough, and can be transformed to each other when the Schwinger-Dyson (SD) equation of the dynamical fermion mass from the fermion-antifermion vacuum (or thermal) condensates is used. The results also generally indicate that two effective potentials with the same single order parameter but rather different mathematical expressions can still be considered physically equivalent if the SD equation corresponding to the extreme value conditions of the two potentials have the same form.Comment: 7 pages, no figur

    Crystalline free energies of micelles of diblock copolymer solutions

    Full text link
    We report a characterization of the relative stability and structural behavior of various micellar crystals of an athermal model of AB-diblock copolymers in solution. We adopt a previously devel- oped coarse-graining representation of the chains which maps each copolymer on a soft dumbbell. Thanks to this strong reduction of degrees of freedom, we are able to investigate large aggregated systems, and for a specific length ratio of the blocks f = MA/(MA + MB) = 0.6, to locate the order-disorder transition of the system of micelles. Above the transition, mechanical and thermal properties are found to depend on the number of particles per lattice site in the simulation box, and the application of a recent methodology for multiple occupancy crystals (B.M. Mladek et al., Phys. Rev. Lett. 99, 235702 (2007)) is necessary to correctly define the equilibrium state. Within this scheme we have performed free energy calculations at two reduced density {\rho}/{\rho}\ast = 4,5 and for several cubic structures as FCC,BCC,A15. At both densities, the BCC symmetry is found to correspond to the minimum of the unconstrained free energy, that is to the stable symmetry among the few considered, while the A15 structure is almost degenerate, indicating that the present sys- tem prefers to crystallize in less packed structures. At {\rho}/{\rho}\ast = 4 close to melting, the Lindemann ratio is fairly high (~ 0.29) and the concentration of vacancies is roughly 6%. At {\rho}/{\rho}\ast = 5 the mechanical stability of the stable BCC structure increases and the concentration of vacancies ac- cordingly decreases. The ratio of the corona layer thickness to the core radius is found to be in good agreement with experimental data for poly(styrene-b-isoprene)(22-12) in isoprene selective solvent which is also reported to crystallize in the BCC structure

    Bubble generation in a twisted and bent DNA-like model

    Get PDF
    The DNA molecule is modeled by a parabola embedded chain with long-range interactions between twisted base pair dipoles. A mechanism for bubble generation is presented and investigated in two different configurations. Using random normally distributed initial conditions to simulate thermal fluctuations, a relationship between bubble generation, twist and curvature is established. An analytical approach supports the numerical results.Comment: 7 pages, 8 figures. Accepted for Phys. Rev. E (in press

    Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber

    Full text link
    A pure silica photonic crystal fiber with a group velocity dispersion (β2\beta_2) of 4 ps2^2/km at 1.55 μ\mum and less than 7 ps2^2/km from 1.32 μ\mum to the zero dispersion wavelength (ZDW) 1.80 μ\mum was designed and fabricated. The dispersion of the fiber was measured experimentally and found to agree with the fiber design, which also provides low loss below 1.83 μ\mum due to eight outer rings with increased hole diameter. The fiber was pumped with a 1.55 μ\mum, 125 fs laser and, at the maximum in-coupled peak power (P0_0) of 9 kW, a 1.34-1.82 μ\mum low-noise spectrum with a relative intensity noise below 2.2\% was measured. The numerical modeling agreed very well with the experiments and showed that P0_0 could be increased to 26 kW before noise from solitons above the ZDW started to influence the spectrum by pushing high-noise dispersive waves through the spectrum
    corecore