research

Quantum-mechanical machinery for rational decision-making in classical guessing game

Abstract

In quantum game theory, one of the most intriguing and important questions is, "Is it possible to get quantum advantages without any modification of the classical game?" The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call 'reasoning') to generate the best strategy, which may occur internally, e.g., in the player's brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.Comment: 9 pages, 10 figures, The scenario is more improve

    Similar works

    Full text

    thumbnail-image

    Available Versions