1,015 research outputs found
The Resonant Theory Of Longitudinal Emittance Blowup By Phase modulated high Harmonic Cavities
Electric Switching of the Charge-Density-Wave and Normal Metallic Phases in Tantalum Disulfide Thin-Film Devices
We report on switching among three charge-density-wave phases - commensurate,
nearly commensurate, incommensurate - and the high-temperature normal metallic
phase in thin-film 1T-TaS2 devices induced by application of an in-plane
electric field. The electric switching among all phases has been achieved over
a wide temperature range, from 77 K to 400 K. The low-frequency electronic
noise spectroscopy has been used as an effective tool for monitoring the
transitions, particularly the switching from the incommensurate
charge-density-wave phase to the normal metal phase. The noise spectral density
exhibits sharp increases at the phase transition points, which correspond to
the step-like changes in resistivity. Assignment of the phases is consistent
with low-field resistivity measurements over the temperature range from 77 K to
600 K. Analysis of the experimental data and calculations of heat dissipation
suggest that Joule heating plays a dominant role in the electric-field induced
transitions in the tested 1T-TaS2 devices on Si/SiO2 substrates. The
possibility of electrical switching among four different phases of 1T-TaS2 is a
promising step toward nanoscale device applications. The results also
demonstrate the potential of noise spectroscopy for investigating and
identifying phase transitions in materials.Comment: 32 pages, 7 figure
Spin - Phonon Coupling in Nickel Oxide Determined from Ultraviolet Raman Spectroscopy
Nickel oxide (NiO) has been studied extensively for various applications
ranging from electrochemistry to solar cells [1,2]. In recent years, NiO
attracted much attention as an antiferromagnetic (AF) insulator material for
spintronic devices [3-10]. Understanding the spin - phonon coupling in NiO is a
key to its functionalization, and enabling AF spintronics' promise of
ultra-high-speed and low-power dissipation [11,12]. However, despite its status
as an exemplary AF insulator and a benchmark material for the study of
correlated electron systems, little is known about the spin - phonon
interaction, and the associated energy dissipation channel, in NiO. In
addition, there is a long-standing controversy over the large discrepancies
between the experimental and theoretical values for the electron, phonon, and
magnon energies in NiO [13-23]. This gap in knowledge is explained by NiO
optical selection rules, high Neel temperature and dominance of the magnon band
in the visible Raman spectrum, which precludes a conventional approach for
investigating such interaction. Here we show that by using ultraviolet (UV)
Raman spectroscopy one can extract the spin - phonon coupling coefficients in
NiO. We established that unlike in other materials, the spins of Ni atoms
interact more strongly with the longitudinal optical (LO) phonons than with the
transverse optical (TO) phonons, and produce opposite effects on the phonon
energies. The peculiarities of the spin - phonon coupling are consistent with
the trends given by density functional theory calculations. The obtained
results shed light on the nature of the spin - phonon coupling in AF insulators
and may help in developing innovative spintronic devices.Comment: 16 pages; 2 figure
Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: a Molecular Dynamics Study
We have used molecular dynamics to calculate the thermal conductivity of
symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in
size (up to ~4 nm wide and ~10 nm long). For symmetric nanoribbons, the
calculated thermal conductivity (e.g. ~2000 W/m-K @400K for a 1.5 nm {\times}
5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally
measured value for graphene. We have investigated the effects of edge chirality
and found that nanoribbons with zigzag edges have appreciably larger thermal
conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons,
we have found significant thermal rectification. Among various
triangularly-shaped GNRs we investigated, the GNR with armchair bottom edge and
a vertex angle of 30{\deg} gives the maximal thermal rectification. We also
studied the effect of defects and found that vacancies and edge roughness in
the nanoribbons can significantly decrease the thermal conductivity. However,
substantial thermal rectification is observed even in the presence of edge
roughness.Comment: 13 pages, 5 figures, slightly expanded from the published version on
Nano Lett. with some additional note
Direct Observation of Martensitic Phase-Transformation Dynamics in Iron by 4D Single-Pulse Electron Microscopy
The in situ martensitic phase transformation of iron, a complex solid-state transition involving collective atomic displacement and interface movement, is studied in real time by means of four-dimensional (4D) electron microscopy. The iron nanofilm specimen is heated at a maximum rate of ∼10^(11) K/s by a single heating pulse, and the evolution of the phase transformation from body-centered cubic to face-centered cubic crystal structure is followed by means of single-pulse, selected-area diffraction and real-space imaging. Two distinct components are revealed in the evolution of the crystal structure. The first, on the nanosecond time scale, is a direct martensitic transformation, which proceeds in regions heated into the temperature range of stability of the fcc phase, 1185−1667 K. The second, on the microsecond time scale, represents an indirect process for the hottest central zone of laser heating, where the temperature is initially above 1667 K and cooling is the rate-determining step. The mechanism of the direct transformation involves two steps, that of (barrier-crossing) nucleation on the reported nanosecond time scale, followed by a rapid grain growth typically in ∼100 ps for 10 nm crystallites
Ultrathin Oxide Films by Atomic Layer Deposition on Graphene
In this paper, a method is presented to create and characterize mechanically
robust, free standing, ultrathin, oxide films with controlled, nanometer-scale
thickness using Atomic Layer Deposition (ALD) on graphene. Aluminum oxide films
were deposited onto suspended graphene membranes using ALD. Subsequent etching
of the graphene left pure aluminum oxide films only a few atoms in thickness. A
pressurized blister test was used to determine that these ultrathin films have
a Young's modulus of 154 \pm 13 GPa. This Young's modulus is comparable to much
thicker alumina ALD films. This behavior indicates that these ultrathin
two-dimensional films have excellent mechanical integrity. The films are also
impermeable to standard gases suggesting they are pinhole-free. These
continuous ultrathin films are expected to enable new applications in fields
such as thin film coatings, membranes and flexible electronics.Comment: Nano Letters (just accepted
Simulation of dimensionality effects in thermal transport
The discovery of nanostructures and the development of growth and fabrication
techniques of one- and two-dimensional materials provide the possibility to
probe experimentally heat transport in low-dimensional systems. Nevertheless
measuring the thermal conductivity of these systems is extremely challenging
and subject to large uncertainties, thus hindering the chance for a direct
comparison between experiments and statistical physics models. Atomistic
simulations of realistic nanostructures provide the ideal bridge between
abstract models and experiments. After briefly introducing the state of the art
of heat transport measurement in nanostructures, and numerical techniques to
simulate realistic systems at atomistic level, we review the contribution of
lattice dynamics and molecular dynamics simulation to understanding nanoscale
thermal transport in systems with reduced dimensionality. We focus on the
effect of dimensionality in determining the phononic properties of carbon and
semiconducting nanostructures, specifically considering the cases of carbon
nanotubes, graphene and of silicon nanowires and ultra-thin membranes,
underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture
Notes in Physics volume "Thermal transport in low dimensions: from
statistical physics to nanoscale heat transfer" (S. Lepri ed.
Effect of Layer-Stacking on the Electronic Structure of Graphene Nanoribbons
The evolution of electronic structure of graphene nanoribbons (GNRs) as a
function of the number of layers stacked together is investigated using
\textit{ab initio} density functional theory (DFT) including interlayer van der
Waals interactions. Multilayer armchair GNRs (AGNRs), similar to single-layer
AGNRs, exhibit three classes of band gaps depending on their width. In zigzag
GNRs (ZGNRs), the geometry relaxation resulting from interlayer interactions
plays a crucial role in determining the magnetic polarization and the band
structure. The antiferromagnetic (AF) interlayer coupling is more stable
compared to the ferromagnetic (FM) interlayer coupling. ZGNRs with the AF
in-layer and AF interlayer coupling have a finite band gap while ZGNRs with the
FM in-layer and AF interlayer coupling do not have a band gap. The ground state
of the bi-layer ZGNR is non-magnetic with a small but finite band gap. The
magnetic ordering is less stable in multilayer ZGNRs compared to single-layer
ZGNRs. The quasipartcle GW corrections are smaller for bilayer GNRs compared to
single-layer GNRs because of the reduced Coulomb effects in bilayer GNRs
compared to single-layer GNRs.Comment: 10 pages, 5 figure
A Self Assembled Nanoelectronic Quantum Computer Based on the Rashba Effect in Quantum Dots
Quantum computers promise vastly enhanced computational power and an uncanny
ability to solve classically intractable problems. However, few proposals exist
for robust, solid state implementation of such computers where the quantum
gates are sufficiently miniaturized to have nanometer-scale dimensions. Here I
present a new approach whereby a complete computer with nanoscale gates might
be self-assembled using chemical synthesis. Specifically, I demonstrate how to
self-assemble the fundamental unit of this quantum computer - a 2-qubit
universal quantum controlled-NOT gate - based on two exchange coupled
multilayered quantum dots. Then I show how these gates can be wired using
thiolated conjugated molecules as electrical connectors. A qubit is encoded in
the ground state of a quantum dot spin-split by the Rashba interaction.
Arbitrary qubit rotations are effected by bringing the spin splitting energy in
a target quantum dot in resonance with a global ac magnetic field by applying a
potential pulse of appropriate amplitude and duration to the dot. The
controlled dynamics of the 2-qubit controlled-NOT operation (XOR) can be
realized by exploiting the exchange coupling with the nearest neighboring dot.
A complete prescription for initialization of the computer and data
input/output operations is presented.Comment: 22 pages, 4 figure
- …
