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We consider some new aspects of controlled bunch dilution theory. The dependence of the blow-up rate
on the high frequency cavity (HFC) parameters is theoretically accounted for. We found that the dilution
rate 'has a resonant dependence on phase modulation frequency. In addition, it is strongly dependent on
the phase modulation amplitude and the phase of the HFC voltage relative to the fundamental. All our
theoretical conclusions have been confirmed by numerical simulation. We demonstrate how to affect
different parts of the bunch and modify the particle distribution.

1. INTRODUCTION

The essential characteristic of kaon factory projects is high average intensity of the
accelerated beam. This is attained by having a high circulating current and rapid
cycling. Therefore, strong collective effects are expected. One of the most severe could
be the longitudinal microwave instability. This can occur in a beam of a given
intensity with a longitudinal emittance that is too small!. In the TRIUMF and
Moscow Kaon Factory projects the upper bound on the longitudinal impedenee of
the main ring synchrotron Z/n is about 1-2 Q2,3, without an artificial increase of
bunch area.

It is clear that this value is ,difficult to attain. Therefore, in the above projects,
controlled emittance blow-up prior to acceleration in the main ring is proposed. The
longitudinal emmitance has to be increased by a factor of 3 within 10-20 ms. This
can be achieved by using additional high frequency cavities (HFCs) with phase
modulation. Such cavities were successfully designed and constructed at the CERN
Proton Synchrotron (PS)4 in order to reduce particle loss during transition crossing.
At the Brookhaven Alternating Gradient Synchrotron (AGS), a project to build a
high frequency cavity is in progress 5

.

From rf noise theory, it follows that emittance grows linearly with time due to
particle diffusion6,

7
. Boussard applied rf noise theory to explain the longitudinal

controlled blow-up in which HFCs were used with a sine-modulated phase8
. This

model correctly predicted some qualitative features observed during PS experiments
and in numerical simulations4

,8. According to this theory the dilution rate should
be independent of phase modulation frequency. As has been shown later by numerical
simulations9

, however, the dilution rate depends strongly on the phase modulation
frequency. The author attemps to explain this dependence by taking into account
the role of a parametric resonance area near the center of the bunch.
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In this paper we consider some new aspects of controlled bunch dilution theory.
The dependence of the blow-up rate on the HFC parameters is theoretically
accounted for. We have found that the dilution rate has a resonant dependence on
phase modulation frequency. It has also been shown that the dilution rate is strongly
dependent on the phase modulation amplitude and the phase of the HFC voltage
relative to the fundamental. It is possible to affect different parts of the bunch and
modify the particle distribution. All our theoretical conclusions have been confirmed
by numerical simulation.

2. BASIC EQUATIONS

2.1. General equations of motion with HFC

The longitudinal motion of the particles is governed by the following equations:

. - h1]wo W
qJ - fJ2 E

s s

. ewow== --v.
2n

(1)

Here qJ denotes the deviation of a particle from the synchronous phase qJs == 0;

W == E - E s ' where Es is the synchronous particle energy;

h is the harmonic number (f,.f == hfo);

fJsc and W o == 2nfo are the velocity and revolution frequency of the synchronous
particle; and

1] == l/y; - 1/y2
, where Yt is the value of Y == E/Eo at transition. The resulting voltage

V affecting the particles can be represented as the sum of the main system voltage
Vo sin qJ and a secondary voltage

v1(qJ, t) == V1 sin(NqJ + <I>(t)), (2)

(4)

where V 1 and Nf,.f are the voltage and frequency applied to HFC, and <I>(t) is a
phase modulation function. Here Nh should be an integer, though this need not be
true for N.

Equations (1) are equivalent to one phase equation

iP + w;o sin qJ == 8W;0 sin(NqJ + <I>(t)), (3)

where the parameter 8 is the ratio of the secondary and primary voltage
amplitudes and W so == (w~I1]leVoh/2nfJ; £s)1/2 is the synchrotron frequency of small
phase oscillations.

Now let us introduce the new variables rand l/J (corresponding to the energy and
phase of the synchrotron oscillations) in Eq. (3) with 8 == O.

qJ == 2 arcsin(r sn(wsol/J/w(r), r))

(p == 2wso r cn(wsol/J/w(r), r).
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Here w(r) = nwso/2K(r) is the r-dependent synchrotron frequency, K(r) is the elliptic
integral of the first kind

K(r) = 1"/2 dO ,
o J 1 - r2 sin2 (J

and sn(u, r), cn(u, r) are Jacobian elliptic functions.
The variable r, given by

1 ( 1 )1/2r = - 1 - cos qJ + --2 cP 2

J2 2wsO

is the constant of motion of a nonperturbed system (8 = 0). Here r varies from zero
in the center of the bucket to 1 on the separatrix.

Using the coordinate transformation (4) we can rewrite the phase Eq. (3) in the
form

r = 8Wso sin(2N arcsin(r sn(wso t/J/w(r), r)) + <b(t)) cn(wso t/J/w(r), r),
2

l/J = w(r) - e~ w(r) sin(2N arcsin(r sn(wso l/t/w(r), r)) + <I>(t))
2r

x i (arcsin(r sn(wsol/t/w(r), r))or

(5)

To simplify Eqs. (5) let us neglect the terms of order 8
Z in the right-hand sides of

these expressions. For this purpose we use the Fourier series for elliptic functions.
Analysis of the Fourier coefficients shows that, for 8 in a range (0.1-0.3) and for
r < 2/3, it is sufficient to take into account only the first Fourier harmonic. This is
a good approximation when the length of the bunch does not exceed 120°. Then
Eqs. (5) can be written as

8w(r)
r = - L kJk(2Nr)[sin(ktjJ + <I>(t)) + (-l)k sin(ktjJ - <I>(t))]

4Nr k

l/J = w(r) - ew(r) {J1(2Nr) cos <I>(t) + ! L [Jk + 1(2Nr) - J k - 1(2Nr)]
2r k

x [cos(kl/t + <I>(t)) + (-i)k cos(kl/t - <I>(t))J }

Here Jk(x) is the Bessel function of order k.

2.2. HFC With Harmonic Phase Modulation

For HFCs with harmonic phase modulation, we can write

<I>(t) = LI. sin(Qt + {} 1) + (}2' (7)
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where a and Q are the phase modulation amplitude and frequency, respectively,
and () 1 and ()z are constants.

Expanding again the right-hand sides of Eqs. (6) in a Fourier series with respect to
phase (ktjJ - lnt) and neglecting high order oscillation terms, we get

. 8w(r) l ' .
r = --LL (-1) kAk,l(akl SIn ()2 cos 'Pkl + bkl cos ()2 sIn 'Pkl)

4Nr k I

8w(r) 8w(r) I
~ = w(r) - - Al,o cos ()2 - - LL (-1) (Ak+1,l - Ak- 1,l) (8)

2r 4r k I

X (akl sin ()2 sin 'IIkl + bkl cos ()2 cos 'IIkl)'

where

Akl = Jk(2Nr)J,(a),

akl = [1 - (_1)k+l], bkl = [1 + (_1)k+I],

\IIkl = kt/J - IQt - 1()1'

If one or more resonant conditions for \IIkl'

kw(ro) = IQ, (9)

are satisfied, then we obtain nonoscillating terms in the right-hand sides of Eqs. (8),
which lead to systematic changes of rand t/J with time. It can easily be shown that
at a given point ro only integer multiple resonances can exist

k

I

ko-, ork=mko,l=mZo, wherem=1,2, ...
Zo

Since the frequency w(r) changes slightly in the relevant range we can use a
one-resonance model:

. 8w(r)"mlo .
r = 4Nr .;- mko(-1) Amko,mlo[bmko,mlo cos ()2 sm(m'Pr)

+ amko,mlo sin ()2 cos(m\llr)]'

\jJ = kow(r) - Ion + 0(8),

(10)

(11)

(13)

where \II, = kot/J - lont - ZO()l is the resonant phase. The terms of order 0(8) in Eq.
(11) can be obtained from Eqs. (8).

The number of terms in the series (10) that contribute significantly inside the bunch
o< r < rmax depends on the value of N. For a Bessel function of high order Jk(x1),
the position of the first maximum can be roughtly expressed in the form

Xl ~ k + 0.8k 1
/
3

.

Therefore, the mth harmonic is significant if the condition

mko + 0.8(mko)1/3 ~ 2Nrmax

is satisfied.
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Equations (10), (11) have an integral of motion, which is accurate to 0(82):

H(r, \Pr ) == fr(koW(r) - lQo)dr + eL [Cm(r) cos(m'Pr)
o m

+ Dm(r) sin(m\Pr )],

where

5

(13)

(14)

In what follows we shall suppose that Eqs. (10) and (11) are canonical with
Hamiltonian H(r, \Pr ). This assumption is correct up to terms '" 8 in Eq. (11) for
resonant phase.

2.3. Evolution of Particle Distribution

Let us consider a distribution function f(r, 'Pr , t). The equation that governs the
time evolution of the local density distribution is

of == ~ (OH f) _~ (OH f)
at or o'Pr o'Pr or .

Now we assume that the initial distribution depends solely on r: f(r, 'Pr , 0) ==
Fo(r). Then we can represent the solution of Eq. (14) in the form

m

Using Eqs. (14) and (15) we get

oPm aio
- == - mC - + mbQat m or m'

aQm aio
- == mDm - + mbPm ,at or

Pm(r, 0) == Qm(r, 0) == 0, m == 1, 2, ... ,

aio 8
2 a

- == - Lm- (QmDm - PmCm),at 2 m or

(16)

(17)

(18)

(19)

where b == kow(r) - 100.. For simplicity we choose the center of the resonance at the
point ro == O. If we take into account that

Q D - C p ~ sin(mc5t) oF~ (C2 + D2)
m m m m () tlr m ", ,
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then Eq. (19) can be reduced to

r'-I 82 28 {2 2 8Fo [1 - COS(m£5t)J}
fo(r,t)=Fo(r)+-Lm - (Cm+Dm)- 2 •

2 m 8r 8r (m£5)

Using Eq. (20) we get from Eq. (15) the description of the time evolution of the
initial distribution. It has been obtained in chaotic phase approximation. Since the
coefficients Pm and Qm change linearly with time, we can see from Eq. (15) that phase
inhomogeneity also increases linearly with time proportional to 8. However, the
phase-averaged distribution function lo(r, t) defined by Eq. (20) varies as 82.

3. THE DEPENDENCE OF THE DILUTION RATE ON THE HFC
PARAMETERS: COMPUTER SIMULATION

From the analysis of Eqs. (10) and (11) one can determine the dependence of the
longitudinal emittance blow-up rate on the individual HFC parametrs: 8, Q, a, N,
81 and 82 (see expression (7)). Let us consider the consequences of Eqs. (10) and (11)
in detail.

1. The blow-up rate does not depend on the phase 81 ,

2. The dilution rate does not depend on the sign of the phase modulation
amplitude a (one can consider 81 + n). However, it follows from Eq. (10) that a strong
dependence on the value of a exists. The value a = n, which was used in papers [8,
9 and 10J is close to the positions of the maxima of the orders (m = 1, 2...) of the
functions J m1o(a) with 10 = 1. So this choice of a is very convenient for resonances of
the form Q = kw(ro). On the other hand, the resonances with 10 > 1 are less effective
because it is impossible to obtain the significant contribution from J m1o(a) simul
taneously. In practice for resonances with 10 > 1 it is necessary to use cavities with
low quality factor Q, because of the large frequency modulation.

3. If the phase 82 = 0, then for resonances with an odd value of (k + I) the first
term (m = 1) of the series in Eq. (10) equals zero. However, for even value of (k + 1),
the harmonics with m = 1 give significant contributions. So for 82 = 0 the resonances
with 10 = 1 and even k (k = 2, 4, ...) are suppressed. In the case 82 = n12, 10 = 1 we
have the opposite situation. There the resonances with odd k = 1, 3, ... are
suppressed.

To numerically see the influence of different parameters on the dilution speed, a
computer program based on Eqs. (1) was developed. To characterize the beam
dilution we choose9 a parameter

where n is the number of particles. The value R 1
/
2 is the rms size of the bunch in

phase space. Figure 1 shows the dependence of the relative change in R after the first
2.5 ms on the normalized phase modulation frequency Qlwso for O2 = 0 (Fig. 1a) and
O2 = nl2 (Fig. 1b). The other HFC parameters are set to 8 = 0.2, N = 10.5, a = n. For



1
.0

0
.5

I
J
L UJ
~,

o

66

e
=

!J
i

2
2

5b
)

4-
J

2

1
.0

0
.5

ni
H

1
~

'J

!~
t

G
J

I
,

I

[,
::

0
.2

6)
=

0
,.

1
.0

L
N

=
to

.5
a

)
1

1
.0

tX
..

=
.5

C

0
.5

I
il

t
=2

.5
m

s
..

I
I

n
10

.5

H
/R

F
IG

U
R

E
1.

T
he

de
pe

nd
en

ce
of

di
lu

ti
on

on
ph

as
e

m
od

ul
at

io
n

fr
eq

ue
nc

y
Q

/w
so

fo
r

()
2

=
0

(a
)

an
d

()
2

=
n/

2
(b

).

-..
..J



8 V. V. BALANDIN, M. B. DYACHKOV AND E. N. SHAPOSHNIKOVA

1.25

1. a

0.75

0.25

0.0
2.5 2.75 3.0

FIGURE 2 The dependence of dilution on phase modulation frequency Qjwso for various (}2'

°< (}2 < n/2 we have intermediate cases (see Fig. 2), which can occur for different
bunches on the orbit if N is not an integer: N = Int[N] + L1. Indeed if (}2 = °for a
certain bunch then for the next one (}2 = 2nL1 and so on. Hence, for the choice
N = 22 + 1/3 of Ref. [9J, the phase (}h for a sequence of bunches looks like 0, n/3, n/3,
0, .... Therefore, for two bunches among three, the resonance is reduced, so the
dilution rates for different bunches are not identical. Note that the numerical
simulation in Ref. [9J deals with the case (}2 = °only. The choice L1 = 1/4 is the worst
for that case because half of the bunches are in the suppressed resonance region. In
order to raise the microwave instability threshold it is necessary to increase the
emittance of every bunch on the orbit. This requirement is satisfied for L1 = 0, 1/2,
whereNh-integer. To provide the stability for the coupled bunch modes (at frequency
Nhfo) during dilution we should also set L1 = 0, 1/2.

4. Resonances of the form

laO. = w(r), ko = 1,

are not parametric and give only linear growth of r with time in the vicinity of r = o.
Hence they should reveal themselves as weaker than the resonances of lower orders
of the form

laO. = kow(r), ko > 1,

The inefficiency of the use of resonances with 10 > 1 can be seen in Fig. 1.
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FIGURE 3. Distributions of particles after dilution with n = 3w(ro = 0), N = 10.5, f; = 0.2. Particles
were placed initially at circle with r = 0.3 (a) and r = 0.5 (b).
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5. Let us consider the dependence of the dilution rate on N. From Eq. (9) it follows
that r is proportional to liN. On the other hand, for bunches with a given size, the
number of harmonics affecting the particles rises with increasing N; see Eq. (12).
Therefore, the dilution rate is maximal for some magnitude of N. For example, for
bunch dilution using the phase modulation frequency Q = 3w (r) the quantity N is
of the order of 10. With an increase in the resonance number ko this number N grows
too.

As follows from Eq.(lO), we can influence different parts of the bunch by varying
the parameters rx and N. Figure 3a and 3b show the distributions of particles placed
initially on a circle with r = 0.3 and r = 0.5. They correspond to the resonance
Q = 3w(r); N = 10.5 and are described approximately by the following equation:

8W
r =~ [3J3(2Nr)J l(rx) sin(3t/Jr) + 6J6(2Nr)J2(rx) sin(6t/Jr)

2Nr

+ 9Jg(2Nr)J3(rx) sin(9t/Jr) + ...].

RO = 0.0

~ 6.11
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0.00
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(a)

FIGURE 4 Curves H = constant for Yo = 0 (a), Yo = 0.25 (b) and Yo = 0.5 (c).
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FIGURE 4b

In the first case (Fig. 3a) the second term in this expression is dominant, while in the
second one (Fig. 3b) the third term is the largest. As follows from (12) it is desirable
to use a large N to obtain a smoother distribution of particles in longitudinal phase
space.

6. To investigate the influence of the location of the resonance center ro
(koQ = low(ro)), let us consider the Hamiltonian H (see Eq. (13)). Using an expansion
of the resonance frequency in the vicinity of point ro we obtain

wsoko 2 1 3
H ~ - -4- [ro(r - ro) + 3(r - ro) ]

+ 8 L [em cos(mt/Jr) + Dmsin(mt/Jr)]' (21)
m

At small 8 the resonance capture region has a width I1r ~ (8/ro)1 /2 and its center at
ro- The size of the capture region decreases with an increase in roo The curves
H = constant are illustrated in Fig. 4a,b and c for ro = 0, 0.25 and 0.5 respectively.
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FIGURE 4c

It follows from Figure 4 that the dilution regime where ro varies from 0 to the
boundary of the bunch rmax is the most effective.

In Figure 5 we show the distribution functions obtained from initially uniform
distributions after dilution over 10 ms for two cases: a) Q = 3wso (ra = 0) and
b) Q = 2.8wsa. So it is possible to transform the particle distribution in a desirable
way.

4. CONCLUSIONS

We have shown that for the effective bunch dilution it is desirable to choose the
modulation frequency

Q = kaw(ra)

where ka is integer; ko should be odd for f}2 = 0, and may be either odd or even for
f}2 = n12. Nevertheless with increasing ka the value of r (for which influence is effective)
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FIGURE 5. Distribution functions obtained from initially uniform distributions after dilution over 10
ms for n = 3wso (a) and n = 2.8wso (b).

also increases. So the use of high ko (as well as ro i= 0) can produce tails in a particle
distributions. By varying r0 inside the bunch more particles are captured at resonance.
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