2,587 research outputs found
Bosonic Description of Spinning Strings in Dimensions
We write down a general action principle for spinning strings in 2+1
dimensional space-time without introducing Grassmann variables. The action is
written solely in terms of coordinates taking values in the 2+1 Poincare group,
and it has the usual string symmetries, i.e. it is invariant under a)
diffeomorphisms of the world sheet and b) Poincare transformations. The system
can be generalized to an arbitrary number of space-time dimensions, and also to
spinning membranes and p-branes.Comment: Latex, 12 page
Properties of Quantum Hall Skyrmions from Anomalies
It is well known that the Fractional Quantum Hall Effect (FQHE) may be
effectively represented by a Chern-Simons theory. In order to incorporate QH
Skyrmions, we couple this theory to the topological spin current, and include
the Hopf term. The cancellation of anomalies for chiral edge states, and the
proviso that Skyrmions may be created and destroyed at the edge, fixes the
coefficients of these new terms. Consequently, the charge and the spin of the
Skyrmion are uniquely determined. For those two quantities we find the values
and , respectively, where is electron charge,
is the filling fraction and is the Skyrmion winding number. We
also add terms to the action so that the classical spin fluctuations in the
bulk satisfy the standard equations of a ferromagnet, with spin waves that
propagate with the classical drift velocity of the electron.Comment: 8 pages, LaTeX file; Some remarks are included to clarify the
physical results obtained, and the role of the Landau-Lifshitz equation is
emphasized. Some references adde
Quantum Spacetimes in the Year 1
We review certain emergent notions on the nature of spacetime from
noncommutative geometry and their radical implications. These ideas of
spacetime are suggested from developments in fuzzy physics, string theory, and
deformation quantisation. The review focuses on the ideas coming from fuzzy
physics. We find models of quantum spacetime like fuzzy on which states
cannot be localised, but which fluctuate into other manifolds like .
New uncertainty principles concerning such lack of localisability on quantum
spacetimes are formulated.Such investigations show the possibility of
formulating and answering questions like the probabilty of finding a point of a
quantum manifold in a state localised on another one. Additional striking
possibilities indicated by these developments is the (generic) failure of
theorem and the conventional spin-statistics connection. They even suggest that
Planck's `` constant '' may not be a constant, but an operator which does not
commute with all observables. All these novel possibilities arise within the
rules of conventional quantum physics,and with no serious input from gravity
physics.Comment: 11 pages, LaTeX; talks given at Utica and Kolkata .Minor corrections
made and references adde
Twisted Gauge and Gravity Theories on the Groenewold-Moyal Plane
Recent work [hep-th/0504183,hep-th/0508002] indicates an approach to the
formulation of diffeomorphism invariant quantum field theories (qft's) on the
Groenewold-Moyal (GM) plane. In this approach to the qft's, statistics gets
twisted and the S-matrix in the non-gauge qft's becomes independent of the
noncommutativity parameter theta^{\mu\nu}. Here we show that the noncommutative
algebra has a commutative spacetime algebra as a substructure: the Poincare,
diffeomorphism and gauge groups are based on this algebra in the twisted
approach as is known already from the earlier work of [hep-th/0510059]. It is
natural to base covariant derivatives for gauge and gravity fields as well on
this algebra. Such an approach will in particular introduce no additional gauge
fields as compared to the commutative case and also enable us to treat any
gauge group (and not just U(N)). Then classical gravity and gauge sectors are
the same as those for \theta^{\mu \nu}=0, but their interactions with matter
fields are sensitive to theta^{\mu \nu}. We construct quantum noncommutative
gauge theories (for arbitrary gauge groups) by requiring consistency of twisted
statistics and gauge invariance. In a subsequent paper (whose results are
summarized here), the locality and Lorentz invariance properties of the
S-matrices of these theories will be analyzed, and new non-trivial effects
coming from noncommutativity will be elaborated.
This paper contains further developments of [hep-th/0608138] and a new
formulation based on its approach.Comment: 17 pages, LaTeX, 1 figur
Non-Linear Sigma Model on the Fuzzy Supersphere
In this note we develop fuzzy versions of the supersymmetric non-linear sigma
model on the supersphere S^(2,2). In hep-th/0212133 Bott projectors have been
used to obtain the fuzzy CP^1 model. Our approach utilizes the use of
supersymmetric extensions of these projectors. Here we obtain these (super)
-projectors and quantize them in a fashion similar to the one given in
hep-th/0212133. We discuss the interpretation of the resulting model as a
finite dimensional matrix model.Comment: 11 pages, LaTeX, corrected typo
The Fermion Doubling Problem and Noncommutative Geometry
We propose a resolution for the fermion doubling problem in discrete field
theories based on the fuzzy sphere and its Cartesian products.Comment: 12 pages Latex2e, no figures, typo
- …
