4,017 research outputs found
On the Angular Dependence of the Radiative Gluon Spectrum
The induced momentum spectrum of soft gluons radiated from a high energy
quark produced in and propagating through a QCD medium is reexamined in the
BDMPS formalism. A mistake in our published work (Physical Review C60 (1999)
064902) is corrected. The correct dependence of the fractional induced loss
as a universal function of the variable
where is the size of the medium and
the transport coefficient is presented. We add the proof that the
radiated gluon momentum spectrum derived in our formalism is equivalent with
the one derived in the Zakharov-Wiedemann approach.Comment: LaTex, 5 pages, 1 figur
The role of finite kinematic bounds in the induced gluon emission from fast quarks in a finite size quark-gluon plasma
We study the influence of finite kinematic boundaries on the induced gluon
radiation from a fast quark in a finite size quark-gluon plasma. The
calculations are carried out for fixed and running coupling constant. We find
that for running coupling constant the kinematic correction to the radiative
energy loss is small for quark energy larger than about 5 GeV. Our results
differ both analytically and numerically from that obtained by the GLV group
[6]. The effect of the kinematic cut-offs is considerably smaller than reported
in [6].Comment: 11 pages, 4 figure
Photon splitting in a laser field
Photon splitting due to vacuum polarization in a laser field is considered.
Using an operator technique, we derive the amplitudes for arbitrary strength,
spectral content and polarization of the laser field. The case of a
monochromatic circularly polarized laser field is studied in detail and the
amplitudes are obtained as three-fold integrals. The asymptotic behavior of the
amplitudes for various limits of interest are investigated also in the case of
a linearly polarized laser field. Using the obtained results, the possibility
of experimental observation of the process is discussed.Comment: 31 pages, 4 figure
Delbr\"uck scattering in combined Coulomb and laser fields
We study Delbr\"uck scattering in a Coulomb field in the presence of a laser
field. The amplitudes are calculated in the Born approximation with respect to
the Coulomb field and exactly in the parameters of the laser field having
arbitrary strength, spectral content and polarization. The case of high energy
initial photon energy is investigated in detail for a monochromatic circularly
polarized laser field. It is shown that the angular distribution of the process
substantially differs from that for Delbr\"uck scattering in a pure Coulomb
field. The value of the cross section under discussion may exceed the latter at
realistic laser parameters that essentially simplify the possibility of the
experimental observation of the phenomenon. The effect of high order terms in
the quantum intensity parameter of the laser field is found to be very
important already at relatively small .Comment: 21 pages, 4 figure
Deciphering the properties of the medium produced in heavy ion collisions at RHIC by a pQCD analysis of quenched large spectra
We discuss the question of the relevance of perturbative QCD calculations for
analyzing the properties of the dense medium produced in heavy ion collisions.
Up to now leading order perturbative estimates have been worked out and
confronted with data for quenched large hadron spectra. Some of
them are giving paradoxical results, contradicting the perturbative framework
and leading to speculations such as the formation of a strongly interacting
quark-gluon plasma. Trying to bypass some drawbacks of these leading order
analysis and without performing detailed numerical investigations, we collect
evidence in favour of a consistent description of quenching and of the
characteristics of the produced medium within the pQCD framework.Comment: 10 pages, 3 figure
Transverse Spectra of Radiation Processes in Medium
We develop a formalism for evaluation of the transverse momentum dependence
of cross sections of the radiation processes in medium. The analysis is based
on the light-cone path integral approach to the induced radiation. The results
are applicable in both QED and QCD
On p_T-broadening of high energy partons associated with the LPM effect in a finite-volume QCD medium
We study the contributions from radiation to -broadening of a high
energy parton traversing a QCD medium with a finite length . The interaction
between the parton and the medium is described by decorrelated static multiple
scattering. Amplitudes of medium-induced gluon emission and parton self-energy
diagrams are evaluated in the soft gluon limit in the BDMPS formalism. We find
both the double-logarithmic correction from incoherent scattering, which is
parametrically the same as that in single scattering, and the logarithmic
correction from the LPM effect. Therefore, we expect a parametrically large
correction from radiation to the medium-induced -broadening in
perturbative QCD.Comment: 19 pages, focusing only on calculations about the medium-induced
diagrams, origin for double-log reinterpreted, final version to appear in
JHE
Optogenetic perturbations reveal the dynamics of an oculomotor integrator
Many neural systems can store short-term information in persistently firing neurons. Such persistent activity is believed to be maintained by recurrent feedback among neurons. This hypothesis has been fleshed out in detail for the oculomotor integrator (OI) for which the so-called “line attractor” network model can explain a large set of observations. Here we show that there is a plethora of such models, distinguished by the relative strength of recurrent excitation and inhibition. In each model, the firing rates of the neurons relax toward the persistent activity states. The dynamics of relaxation can be quite different, however, and depend on the levels of recurrent excitation and inhibition. To identify the correct model, we directly measure these relaxation dynamics by performing optogenetic perturbations in the OI of zebrafish expressing halorhodopsin or channelrhodopsin. We show that instantaneous, inhibitory stimulations of the OI lead to persistent, centripetal eye position changes ipsilateral to the stimulation. Excitatory stimulations similarly cause centripetal eye position changes, yet only contralateral to the stimulation. These results show that the dynamics of the OI are organized around a central attractor state—the null position of the eyes—which stabilizes the system against random perturbations. Our results pose new constraints on the circuit connectivity of the system and provide new insights into the mechanisms underlying persistent activity
Energy loss of quarks in deconfined matter at RHIC: photon-tagged jets, single electron and dilepton spectra from open charm
We report a first attempt (i) to derive constraints on the energy loss of
charm quarks in a deconfined medium from the recent PHENIX data of
single-electron transverse momentum spectra and (ii) to estimate the resulting
suppression of dileptons from correlated semi-leptonic decays of open charmed
mesons. The momentum imbalance of photon-tagged light-quark jets is also
considered.Comment: contribution to Quark Matter 2002, Nantes, France, July 18 - 24, 200
Non-Abelian Energy Loss at Finite Opacity
A systematic expansion in opacity, , is used to clarify the
non-linear behavior of induced gluon radiation in quark-gluon plasmas. The
inclusive differential gluon distribution is calculated up to second order in
opacity and compared to the zeroth order (factorization) limit. The opacity
expansion makes it possible to take finite kinematic constraints into account
that suppress jet quenching in nuclear collisions below RHIC (
AGeV) energies.Comment: 4 pages (revtex) with 3 eps figures, submitted to PR
- …
