209 research outputs found
Evolution of the disc atmosphere in the X-ray binary MXB 1659-298, during its 2015-2017 outburst
We report on the evolution of the X-ray emission of the accreting neutron
star (NS) low mass X-ray binary (LMXB), MXB 1659-298, during its most recent
outburst in 2015-2017. We detected 60 absorption lines during the soft state
(of which 21 at more than 3 ), that disappeared in the hard state
(e.g., the Fe xxv and Fe xxvi lines). The absorbing plasma is at rest, likely
part of the accretion disc atmosphere. The bulk of the absorption features can
be reproduced by a high column density () of highly
ionised () plasma. Its disappearance during the
hard state is likely the consequence of a thermal photo-ionisation instability.
MXB 1659-298's continuum emission can be described by the sum of an absorbed
disk black body and its Comptonised emission, plus a black body component. The
observed spectral evolution with state is in line with that typically observed
in atoll and stellar mass black hole LMXB. The presence of a relativistic Fe
K disk-line is required during the soft state. We also tentatively
detect the Fe xxii doublet, whose ratio suggests an electron density of the
absorber of , hence, the absorber is likely located at
from the illuminating source, well inside the Compton and
outer disc radii. MXB 1659-298 is the third well monitored atoll LMXB
showcasing intense Fe xxv and Fe xxvi absorption during the soft state that
disappears during the hard state.Comment: MNRAS in pres
A switch from translational control to transcriptional control of protein-synthesis in mid-exponential growth-phase of bacterial cultures - specific radioimmune labeling of ribitol-dehydrogenase-synthesising polysomes from klebsiella-aerogenes in the presence of heparin
Qualitative exploration of barriers and facilitators of dental service utilization of pregnant women: A triangulation approach
Abstract
Background
Pregnant women are vulnerable to a wide range of oral health conditions that could be harmful to their own health and future child. Despite the usefulness of regular dental service utilization in prevention and early detection of oral diseases, it is notably low among pregnant women. In this qualitative study, we aimed to explore barriers and facilitators influencing pregnant women’s dental service utilization.
Methods
Using a triangulation approach, we included pregnant women (n = 22) from two public health centers, midwives (n = 8) and dentists (n = 12) from 12 other public centers in Tehran (Iran). Data was gathered through face-to-face semi-structured interviewing and focus group discussion methods. The analysis of qualitative data was performed using conventional content analysis with MAXQDA10 software.
Results
Reported barriers of dental service utilization among pregnant women were categorized under emerging themes: Lack of knowledge and misbelief, cost of dental care, physiological changes, fear and other psychological conditions, time constraint, dentists’ unwillingness to accept pregnant women treatment, cultural taboos and lack of interprofessional collaboration. Solutions proposed by dentists, midwives and pregnant women to improve dental care utilization during pregnancy were categorized under three themes: Provision of knowledge, financial support and establishing supportive policies.
Conclusions
Understanding perceived barriers of dental service utilization during pregnancy can serve as baseline information for planning and formulating appropriate oral health education, financial support, and legislations tailored for lower income pregnant women, midwives and dentists in countries with developing oral health care system
The first low-mass black hole x-ray binary identified in quiescence outside of a globular cluster
The observed relation between the X-ray and radio properties of low-luminosity accreting black holes (BHs) has enabled the identification of multiple candidate black hole X-ray binaries (BHXBs) in globular clusters (GCs). Here, we report an identification of the radio source VLA J213002.08+120904 (aka M15 S2), recently reported in Kirsten et al., as a BHXB candidate. They showed that the parallax of this flat-spectrum variable radio source indicates a - + 2.2 0.30.5 kpc distance, which identifies it as lying in the foreground of the GC M15. We determine the radio characteristics of this source and place a deep limit on the X-ray luminosity of ~4 × 1029 erg s.1. Furthermore, we astrometrically identify a faint red stellar counterpart in archival Hubble images with colors consistent with a foreground star; at 2.2 kpc, its inferred mass is 0.1-0.2Me. We rule out that this object is a pulsar, neutron star X-ray binary, cataclysmic variable, or planetary nebula, concluding that VLA J213002.08+120904 is the first accreting BHXB candidate discovered in quiescence outside of a GC. Given the relatively small area over which parallax studies of radio sources have been performed, this discovery suggests a much larger population of quiescent BHXBs in our Galaxy, 2.6 ± 104-1.7 × 108 BHXBs at 3× confidence, than has been previously estimated (~102-104) through population synthesis
The Early Radio Afterglow of Short GRB 230217A
We present the radio afterglow of short gamma-ray burst (GRB) 230217A, which was detected less than 1 day after the gamma-ray prompt emission with the Australia Telescope Compact Array (ATCA) and the Karl G. Jansky Very Large Array. The ATCA rapid-response system automatically triggered an observation of GRB 230217A following its detection by the Neil Gehrels Swift Observatory and began observing the event just 32 minutes postburst at 5.5 and 9 GHz for 7 hr. Dividing the 7 hr observation into three time-binned images allowed us to obtain radio detections with logarithmic central times of 1, 2.8, and 5.2 hr postburst, the first of which represents the earliest radio detection of any GRB to date. The decline of the light curve is consistent with reverse shock emission if the observing bands are below the spectral peak and not affected by synchrotron self-absorption. This makes GRB 230217A the fifth short GRB (SGRB) with radio detections attributed to a reverse shock at early times (<1 day postburst). Following brightness temperature arguments, we have used our early radio detections to place the highest minimum Lorentz factor (Γmin > 50 at ∼1 hr) constraints on a GRB in the radio band. Our results demonstrate the importance of rapid radio follow-up observations with long integrations and good sensitivity for detecting the fast-evolving radio emission from SGRBs and probing their reverse shocks
- …
