21 research outputs found

    A Critical Review of Deep Learning-Based Multi-Sensor Fusion Techniques

    Get PDF
    In this review, we provide a detailed coverage of multi-sensor fusion techniques that use RGB stereo images and a sparse LiDAR-projected depth map as input data to output a dense depth map prediction. We cover state-of-the-art fusion techniques which, in recent years, have been deep learning-based methods that are end-to-end trainable. We then conduct a comparative evaluation of the state-of-the-art techniques and provide a detailed analysis of their strengths and limitations as well as the applications they are best suited for

    Modulation-Mode Assignment in SVD-Aided Downlink Multiuser MIMO-OFDM Systems

    Get PDF
    Multicarrier transmission such as OFDM (orthogonal frequency division multiplexing) is an established technique for radio transmission systems and it can be considered as a promising approach for next generation wireless systems. However, in order to comply with the demand on increasing available data rates in particular in wireless technologies, systems with multiple transmit and receive antennas, also called MIMO (multiple-input multiple-output) systems, have become indispensable for future generations of wireless systems. Due to the strongly increasing demand in high-data rate transmission systems, frequency non-selective MIMO links have reached a state of maturity and frequency selective MIMO links are in the focus of interest. In this field, the combination of MIMO transmission and OFDM can be considered as an essential part of fulfilling the requirements of future generations of wireless systems. However, single-user scenarios have reached a state of maturity. By contrast multiple users' scenarios require substantial further research, where in comparison to ZF (zero-forcing) multiuser transmission techniques, the individual user's channel characteristics are taken into consideration in this contribution. The performed joint optimization of the number of activated MIMO layers and the number of transmitted bits per subcarrier shows that not necessarily all user-specific MIMO layers per subcarrier have to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput

    Sampling phase lock loop (PLL) with low power clock buffer

    Get PDF
    A sampling phase locked loop (PLL) circuit includes a pull-up/down buffer configured to convert an oscillator reference clock into a square wave sampling control signal input to a sampling phase detector. The buffer circuit is configured to reduce power by controlling the switching of the pull-up and pull-down transistors (and thereby the transitions of the sampling control signal) so that the transistors are not on at the same time
    corecore