7,697 research outputs found
Formalizing Size-Optimal Sorting Networks: Extracting a Certified Proof Checker
Since the proof of the four color theorem in 1976, computer-generated proofs
have become a reality in mathematics and computer science. During the last
decade, we have seen formal proofs using verified proof assistants being used
to verify the validity of such proofs.
In this paper, we describe a formalized theory of size-optimal sorting
networks. From this formalization we extract a certified checker that
successfully verifies computer-generated proofs of optimality on up to 8
inputs. The checker relies on an untrusted oracle to shortcut the search for
witnesses on more than 1.6 million NP-complete subproblems.Comment: IMADA-preprint-c
Observation of quantum spin noise in a 1D light-atoms quantum interface
We observe collective quantum spin states of an ensemble of atoms in a
one-dimensional light-atom interface. Strings of hundreds of cesium atoms
trapped in the evanescent fiel of a tapered nanofiber are prepared in a
coherent spin state, a superposition of the two clock states. A weak quantum
nondemolition measurement of one projection of the collective spin is performed
using a detuned probe dispersively coupled to the collective atomic observable,
followed by a strong destructive measurement of the same spin projection. For
the coherent spin state we achieve the value of the quantum projection noise 40
dB above the detection noise, well above the 3 dB required for reconstruction
of the negative Wigner function of nonclassical states. We analyze the effects
of strong spatial inhomogeneity inherent to atoms trapped and probed by the
evanescent waves. We furthermore study temporal dynamics of quantum
fluctuations relevant for measurement-induced spin squeezing and assess the
impact of thermal atomic motion. This work paves the road towards observation
of spin squeezed and entangled states and many-body interactions in 1D spin
ensembles
Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice
We demonstrate preparation and detection of an atom number distribution in a
one-dimensional atomic lattice with the variance dB below the Poissonian
noise level. A mesoscopic ensemble containing a few thousand atoms is trapped
in the evanescent field of a nanofiber. The atom number is measured through
dual-color homodyne interferometry with a pW-power shot noise limited probe.
Strong coupling of the evanescent probe guided by the nanofiber allows for a
real-time measurement with a precision of atoms on an ensemble of some
atoms in a one-dimensional trap. The method is very well suited for
generating collective atomic entangled or spin-squeezed states via a quantum
non-demolition measurement as well as for tomography of exotic atomic states in
a one-dimensional lattice
Mainstreaming prevention: Prescribing fruit and vegetables as a brief intervention in primary care
This is the author's PDF version of an article published in Public health© 2005.This articles discusses a project at the Castlefields Health Centre in Halton whereby primary care professionals issue a prescription for discounts on fruit and vegetables. The prescription is explicitly linked to the five-a-day message
An implementation of Deflate in Coq
The widely-used compression format "Deflate" is defined in RFC 1951 and is
based on prefix-free codings and backreferences. There are unclear points about
the way these codings are specified, and several sources for confusion in the
standard. We tried to fix this problem by giving a rigorous mathematical
specification, which we formalized in Coq. We produced a verified
implementation in Coq which achieves competitive performance on inputs of
several megabytes. In this paper we present the several parts of our
implementation: a fully verified implementation of canonical prefix-free
codings, which can be used in other compression formats as well, and an elegant
formalism for specifying sophisticated formats, which we used to implement both
a compression and decompression algorithm in Coq which we formally prove
inverse to each other -- the first time this has been achieved to our
knowledge. The compatibility to other Deflate implementations can be shown
empirically. We furthermore discuss some of the difficulties, specifically
regarding memory and runtime requirements, and our approaches to overcome them
Back-to-back correlations of high p_T hadrons in relativistic heavy ion collisions
We investigate the suppression factor and the azimuthal correlation function
for high hadrons in central Au+Au collisions at GeV
by using a dynamical model in which hydrodynamics is combined with explicitly
traveling jets. We study the effects of parton energy loss in a hot medium,
intrinsic of partons in a nucleus, and broadening of jets on
the back-to-back correlations of high hadrons. Parton energy loss is
found to be a dominant effect on the reduction of the away-side peaks in the
correlation function.Comment: 4 pages, 4 figures; version to appear in Phys. Rev. Let
Binary pattern tile set synthesis is NP-hard
In the field of algorithmic self-assembly, a long-standing unproven
conjecture has been that of the NP-hardness of binary pattern tile set
synthesis (2-PATS). The -PATS problem is that of designing a tile assembly
system with the smallest number of tile types which will self-assemble an input
pattern of colors. Of both theoretical and practical significance, -PATS
has been studied in a series of papers which have shown -PATS to be NP-hard
for , , and then . In this paper, we close the
fundamental conjecture that 2-PATS is NP-hard, concluding this line of study.
While most of our proof relies on standard mathematical proof techniques, one
crucial lemma makes use of a computer-assisted proof, which is a relatively
novel but increasingly utilized paradigm for deriving proofs for complex
mathematical problems. This tool is especially powerful for attacking
combinatorial problems, as exemplified by the proof of the four color theorem
by Appel and Haken (simplified later by Robertson, Sanders, Seymour, and
Thomas) or the recent important advance on the Erd\H{o}s discrepancy problem by
Konev and Lisitsa using computer programs. We utilize a massively parallel
algorithm and thus turn an otherwise intractable portion of our proof into a
program which requires approximately a year of computation time, bringing the
use of computer-assisted proofs to a new scale. We fully detail the algorithm
employed by our code, and make the code freely available online
Saturation from nuclear pion dynamics
We construct an equation-of-state for nuclear matter based on the chiral
Lagrangian. The relevant scales are discussed and an effective chiral power
expansion scheme, which is constructed to work around the nuclear saturation
density, is presented. A realistic equation-of-state is obtained by adjusting
one free parameter, when the leading and subleading terms in the expansion are
included. The saturation mechanism is due to correlations induced by the
one-pion-exchange interaction. Furthermore, we find a substantial deviation
from the Fermi-gas estimate of the quark condensate in nuclear matter already
at the saturation density.Comment: revised version, with minor corrections, 13 pages, 3 Postscript
figure
New developments in the genetics, pathogenesis, and therapy of IgA nephropathy
Recent years have brought notable progress in the field of IgA nephropathy. Here, we highlight important new directions and latest developments, including successful discovery of several genetic susceptibility loci, formulation of the multihit pathogenesis model, introduction of the Oxford pathology scoring system, and formalization of the Kidney Disease Improving Global Outcomes (KDIGO) consensus treatment guidelines. We focus on the latest genetic findings that confirm a strong contribution of inherited factors and explain some of the geoethnic disparities in disease susceptibility. Most IgA nephropathy susceptibility loci discovered to date encode genes involved in the maintenance of the intestinal epithelial barrier and response to mucosal pathogens. The concerted pattern of interpopulation allelic differentiation across all genetic loci parallels the disease prevalence and correlates with variation in local pathogens, suggesting that multilocus adaptation might have shaped the present-day landscape of IgA nephropathy. Importantly, the 'Intestinal Immune Network for IgA Production' emerged as one of the new targets for potential therapeutic intervention. We place these findings in the context of the multihit pathogenesis model and existing knowledge of IgA immunobiology. Lastly, we provide our perspective on the existing treatment options, discuss areas of clinical uncertainty, and outline ongoing clinical trials and translational studies.Kidney International advance online publication, 16 September 2015; doi:10.1038/ki.2015.252
- …
