18,485 research outputs found

    Quantum transport through a molecular level: a scattering states numerical renormalisation group study

    Full text link
    We use the scattering states numerical renormalization group (SNRG) approach to calculate the current I(V)I(V) through a single molecular level coupled to a local molecular phonon. The suppression of II for asymmetric junctions with increasing electron-phonon coupling, the hallmark of the Franck-Condon blockade, is discussed. We compare the SNRG currents with recently published data obtained by an iterative summation of path integrals approach (ISPI). Our results excellently agree with the ISPI currents for small and intermediate voltages. In the linear response regime I(V)I(V) approaches the current calculated from the equilibrium spectral function. We also present the temperature and voltage evolution of the non-equilibrium spectral functions for a particle-hole asymmetric junction with symmetric coupling to the lead.Comment: 7 pages, 7 figure

    Simulations of the Fomalhaut System Within Its Local Galactic Environment

    Full text link
    Fomalhaut A is among the most well-studied nearby stars and has been discovered to possess a putative planetary object as well as a remarkable eccentric dust belt. This eccentric dust belt has often been interpreted as the dynamical signature of one or more planets that elude direct detection. However, the system also contains two other stellar companions residing ~100,000 AU from Fomalhaut A. We have designed a new symplectic integration algorithm to model the evolution of Fomalhaut A's planetary dust belt in concert with the dynamical evolution of its stellar companions to determine if these companions are likely to have generated the dust belt's morphology. Using our numerical simulations, we find that close encounters between Fomalhaut A and B are expected, with a ~25% probability that the two stars have passed within at least 400 AU of each other at some point. Although the outcomes of such encounter histories are extremely varied, these close encounters nearly always excite the eccentricity of Fomalhaut A's dust belt and occasionally yield morphologies very similar to the observed belt. With these results, we argue that close encounters with Fomalhaut A's stellar companions should be considered a plausible mechanism to explain its eccentric belt, especially in the absence of detected planets capable of sculpting the belt's morphology. More broadly, we can also conclude from this work that very wide binary stars may often generate asymmetries in the stellar debris disks they host.Comment: Accepted to MNRAS, 22 pages, 15 figures, 2 appendice

    A Comprehensive Scan for Heterotic SU(5) GUT models

    Get PDF
    Compactifications of heterotic theories on smooth Calabi-Yau manifolds remains one of the most promising approaches to string phenomenology. In two previous papers, http://arXiv.org/abs/arXiv:1106.4804 and http://arXiv.org/abs/arXiv:1202.1757, large classes of such vacua were constructed, using sums of line bundles over complete intersection Calabi-Yau manifolds in products of projective spaces that admit smooth quotients by finite groups. A total of 10^12 different vector bundles were investigated which led to 202 SU(5) Grand Unified Theory (GUT) models. With the addition of Wilson lines, these in turn led, by a conservative counting, to 2122 heterotic standard models. In the present paper, we extend the scope of this programme and perform an exhaustive scan over the same class of models. A total of 10^40 vector bundles are analysed leading to 35,000 SU(5) GUT models. All of these compactifications have the right field content to induce low-energy models with the matter spectrum of the supersymmetric standard model, with no exotics of any kind. The detailed analysis of the resulting vast number of heterotic standard models is a substantial and ongoing task in computational algebraic geometry.Comment: 33 pages, Late

    Sorption kinetics for the removal of aldehydes from aqueous streams with extractant impregnated resins

    Get PDF
    The sorption kinetics for the removal aldehydes from aqueous solutions with Amberlite XAD-16 and MPP particles impregnated with Primene JM-T was investigated. A model, accounting for the simultaneous mass transfer and chemical reaction, is developed to describe the process. It is based on the analogy to the diffusion and reaction in a stagnant liquid sphere, but corrected for the porosity and particle properties influencing the diffusion. The developed model describes the kinetic behavior of the process in the low concentration region rather well. However, in the high concentration region, larger discrepancies are observed. Initially, the influence of the flow rate was investigated to eliminate the effect of the external mass transfer. The influence of the particle morphology was investigated for both physical and reactive sorption. Physical sorption experiments were used to determine the factor τ that takes the particle properties influencing the diffusion into account. It was shown that the diffusion is faster in XAD-16 than in MPP impregnated systems. Reaction rate constant kx was determined by fitting the model to the experimental data. Sorption of benzaldehyde appears to be significantly slower (kx ~ 10−4 l/mol s) than the sorption of pentanal (kx ~ 10−3 l/mol s) due to the slower chemical reaction. The influence of the particle size was investigated for the sorption of pentanal with XAD-16. It was observed that the particle size does influence the diffusion term, but does not have an effect on the reaction rate. On the other hand, the extractant loading influences the reaction rate slightly in the low concentration region, whereas the initial concentration of the solute has more pronounced effect

    Infall models of Class 0 protostars

    Full text link
    We have carried out radiative transfer calculations of infalling, dusty envelopes surrounding embedded protostars to understand the observed properties of the recently identified ``Class 0'' sources. To match the far-infrared peaks in the spectral energy distributions of objects such as the prototype Class 0 source VLA 1623, pure collapse models require mass infall rates \sim10^{-4}\msunyr1^{-1}. The radial intensity distributions predicted by such infall models are inconsistent with observations of VLA 1623 at sub-mm wavelengths, in agreement with the results of Andre et al. (1993) who found a density profile of ρr1/2\rho \propto r^{-1/2} rather than the expected ρr3/2\rho \propto r^{-3/2} gradient. To resolve this conflict, while still invoking infall to produce the outflow source at the center of VLA 1623, we suggest that the observed sub-mm intensity distribution is the sum of two components: an inner infall zone, plus an outer, more nearly constant-density region. This explanation of the observations requires that roughly half the total mass observed within 2000 AU radius of the source lies in a region external to the infall zone. The column densities for this external region are comparable to those found in the larger Oph A cloud within which VLA 1623 is embedded. The extreme environments of Class 0 sources lead us to suggest an alternative or additional interpretation of these objects: rather than simply concluding with Andre et al. that Class 0 objects only represent the earliest phases of protostellar collapse, and ultimately evolve into older ``Class I'' protostars, we suggest that many Class 0 sources could be the protostars of very dense regions. (Shortened)Comment: 22 pages, including 3 PostScript figures, accepted for publication in The Astrophysical Journa
    corecore