807 research outputs found
Nearly strain-free heteroepitaxial system for fundamental studies of pulsed laser deposition: EuTiO3 on SrTiO3
High quality epitaxial thin-films of EuTiO3 have been grown on the (001)
surface of SrTiO3 using pulsed laser deposition. In situ x-ray reflectivity
measurements reveal that the growth is two-dimensional and enable real-time
monitoring of the film thickness and roughness during growth. The film
thickness, surface mosaic, surface roughness, and strain were characterized in
detail using ex situ x-ray diffraction. The thicnkess and composition were
confirmed with Rutherford Backscattering. The EuTiO3 films grow
two-dimensionally, epitaxially, pseudomorphically, with no measurable in-plane
lattice mismatch.Comment: 7 pages, 6 figure
Capillary Filling of Anodized Alumina Nanopore Arrays
The filling behavior of a room temperature solvent,
perfluoromethylcyclohexane, in approximately 20 nm nanoporous alumina membranes
was investigated in situ with small angle x-ray scattering. Adsorption in the
pores was controlled reversibly by varying the chemical potential between the
sample and a liquid reservoir via a thermal offset, T. The system
exhibited a pronounced hysteretic capillary filling transition as liquid was
condensed into the nanopores. These results are compared with Kelvin-Cohan
theory, with a modified Derjaguin approximation, as well as with predictions by
Cole and Saam.Comment: 4 pages, 3 figures, pre-proof
Microscopic calculation of the spin-dependent neutron scattering lengths on 3He
We report on the spin.dependent neutron scattering length on 3He from a
microscopic calculation of p-3H, n-3He, and d-2H scattering employing the
Argonne v18 nucleon-nucleon potential with and without additional three-nucleon
force. The results and that of a comprehensive R-matrix analysis are compared
to a recent measurement. The overall agreement for the scattering lengths is
quite good. The imaginary parts of the scattering lengths are very sensitive to
the inclusion of three-nucleon forces, whereas the real parts are almost
insensitive.Comment: 9 pages, 1 figur
Atomic-scale surface demixing in a eutectic liquid BiSn alloy
Resonant x-ray reflectivity of the surface of the liquid phase of the
BiSn eutectic alloy reveals atomic-scale demixing extending over
three near-surface atomic layers. Due to the absence of underlying atomic
lattice which typically defines adsorption in crystalline alloys, studies of
adsorption in liquid alloys provide unique insight on interatomic interactions
at the surface. The observed composition modulation could be accounted for
quantitatively by the Defay-Prigogine and Strohl-King multilayer extensions of
the single-layer Gibbs model, revealing a near-surface domination of the
attractive Bi-Sn interaction over the entropy.Comment: 4 pages (two-column), 3 figures, 1 table; Added a figure, updated
references, discussion; accepted at Phys. Rev. Let
On electromagnetic contributions in WIMP quests
The effect pointed out by A. B. Migdal in the 40's (hereafter named Migdal
effect) has so far been usually neglected in the direct searches for WIMP Dark
Matter candidates. This effect consists in the ionization and the excitation of
bound atomic electrons induced by the recoiling atomic nucleus. In the present
paper the related theoretical arguments are developed and some consequences of
the proper accounting for this effect are discussed by some examples of
practical interest.Comment: 14 pages, 6 figures, 2 tables, Int. J. Mod. Phys. A (in publication
Induced Crystallization of Polyelectrolyte-Surfactant Complexes at the Gas-Water Interface
Synchrotron-X-ray and surface tension studies of a strong polyelectrolyte
(PE) in the semi-dilute regime (~ 0.1M monomer-charges) with varying surfactant
concentrations show that minute surfactant concentrations induce the formation
of a PE-surfactant complex at the gas/solution interface. X-ray reflectivity
and grazing angle X-ray diffraction (GIXD) provide detailed information of the
top most layer, where it is found that the surfactant forms a two-dimensional
liquid-like monolayer, with a noticeable disruption of the structure of water
at the interface. With the addition of salt (NaCl) columnar-crystals with
distorted-hexagonal symmetry are formed.Comment: 4 pages, 5 eps figure
Numerical study of surface-induced reorientation and smectic layering in a nematic liquid crystal
Surface-induced profiles of both nematic and smectic order parameters in a
nematic liquid crystal, ranging from an orienting substrate to "infinity", were
evaluated numerically on base of an extended Landau theory. In order to obtain
a smooth behavior of the solutions at "infinity" a boundary energy functional
was derived by linearizing the Landau energy around its equilibrium solutions.
We find that the intrinsic wave number of the smectic structure, which plays
the role of a coupling between nematic and smectic order, strongly influences
the director reorientation. Whereas the smectic order is rapidly decaying when
moving away from the surface, the uniaxial nematic order parameter shows an
oscillatory behavior close to the substrate, accompanied by a non-zero local
biaxiality.Comment: LaTeX, 17 pages, with 4 postscript figure
Theory of x-ray absorption by laser-dressed atoms
An ab initio theory is devised for the x-ray photoabsorption cross section of
atoms in the field of a moderately intense optical laser (800nm, 10^13 W/cm^2).
The laser dresses the core-excited atomic states, which introduces a dependence
of the cross section on the angle between the polarization vectors of the two
linearly polarized radiation sources. We use the Hartree-Fock-Slater
approximation to describe the atomic many-particle problem in conjunction with
a nonrelativistic quantum-electrodynamic approach to treat the photon-electron
interaction. The continuum wave functions of ejected electrons are treated with
a complex absorbing potential that is derived from smooth exterior complex
scaling. The solution to the two-color (x-ray plus laser) problem is discussed
in terms of a direct diagonalization of the complex symmetric matrix
representation of the Hamiltonian. Alternative treatments with time-independent
and time-dependent non-Hermitian perturbation theories are presented that
exploit the weak interaction strength between x rays and atoms. We apply the
theory to study the photoabsorption cross section of krypton atoms near the K
edge. A pronounced modification of the cross section is found in the presence
of the optical laser.Comment: 13 pages, 3 figures, 1 table, RevTeX4, corrected typoe
Two-Loop Effective Potential of O(N)-Symmetric Scalar QED in 4-epsilon Dimensions
The effective potential of scalar QED is computed analytically up to two
loops in the Landau gauge. The result is given in 4-epsilon dimensions using
minimal subtraction and epsilon-expansions. In three dimensions, our
calculation is intended to help throw light on unsolved problems of the
superconducting phase transition, where critical exponents and the position of
the tricritical point have not yet found a satisfactory explanation within the
renormalization group approach.Comment: Author Information under
http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of
paper (including all PS fonts) at
http://www.physik.fu-berlin.de/~kleinert/32
- …
