6,905 research outputs found

    Jobfinding and wages when longrun unemployment is really long : the case of Spain

    Get PDF
    This paper uses the "Encuesta de Condiciones de Vida Y Trabajoll (ECVT)·· a survey of the labor force activity of over 61,000 persons in Spain in 1985 when unemployment exceeded 20%--to examine the effect of unemployrnent insurance (UI) and family status on longrun joblessness. It finds that (1)duratían of joblessness 1s 50me 30% longer for those eligible for UI benefits than for those ineligible for UI; (2) the longterm unemployed are disproportionately secondary workers for whom the family serves as a form of welfare; (3) hazard rates linking the chances of jobfinding to duration of unemployment in the 1981-85 period of massive joblessness did not decline with duration; (4) the length of unemployment spells reduces wages moderately but has huge effect on the probability that re-employed workers take secondary sector jobs; (5) the UI eligible earn more and are more likely to gain regular full-time jobs than those ineligible for UI, congruent with the additional months of Job search associated with UI. The estimated effects of duratían on the hazard and on earnings are consistent with the implications of labor supply and search analysis but not with the view that long unemployment spells create a class of unemployables. Our results imply a sizeable reduction in longterm unemployment with economic recovery

    On the Quantum Chromodynamics of a Massive Vector Field in the Adjoint Representation

    Full text link
    In this paper, we explore the possibility of constructing the quantum chromodynamics of a massive color-octet vector field without introducing higher structures like extended gauge symmetries, extra dimensions or scalar fields. We show that gauge invariance is not enough to constraint the couplings. Nevertheless the requirement of unitarity fixes the values of the coupling constants, which otherwise would be arbitrary. Additionally, it opens a new discrete symmetry which makes the coloron stable and avoid its resonant production at a collider. On the other hand, a judicious definition of the gauge fixing terms modifies the propagator of the massive field making it well-behaved in the ultra-violet limit. The relation between our model and the more general approach based on extended gauge symmetries is also discussed.Comment: Subsection 2.1 rewritten in order to make it more pedagogical. This version match the text accepted in IJMP

    Flow Blurring-Enabled Production of Polymer Filaments from Poly(ethylene oxide) Solutions

    Get PDF
    Flow blurring (FB) atomizers are relatively simple yet robust devices used for the generation of sprays from solutions of a wide range of viscosities. In this work, we have demonstrated that FB devices may also be applied for massive production of liquid filaments from polymeric solutions. They can later be transformed into solid filaments and fibers, leading to the production of so-called fiber mats. The liquid precursors consisted of poly(ethylene oxide) (PEO) solutions of varying molecular weights (105 [100k] to 4 × 106 g/mol [4M]) and concentrations. The FB device was operated in the gas pressure range of 3−6 bar. Except for solutions of PEO 100k, all solutions exhibited a shear thinning behavior. For massive filament production, a threshold polymer concentration (ct) was identified for each molecular weight. Below such concentration, the atomization resulted in droplets (the classical FB functioning mode). Such a threshold value decreased as the PEO molecular weight increased, and it coincides with the polymer coil overlap concentration, c*. The viscoelastic nature of the solutions was also observed to increase with the molecular weight. A 3.2 dependency of the zero-shear rate viscosity on a so-called Bueche parameter was found for filament production, whereas a nearly linear dependency was found for droplet production. In general, the mean diameter of the filaments decreased as they traveled downstream from the atomization point. Furthermore, at a given distance from the atomizer outlet and gas pressure, the mean filament diameter slightly shifted toward larger sizes with increasing PEO molecular weight. The tendency agrees well with the calculated filaments’ Deborah number, which increases with PEO molecular weight. The approach presented herein describes a highthroughput and efficient method for the massive production of viscous filaments. These may be transformed into fibers by an on-line drying step.Ministerio de Economía y Competitividad DPI2016-78887-C3-1-

    Finite VEVs from a Large Distance Vacuum Wave Functional

    Get PDF
    We show how to compute vacuum expectation values from derivative expansions of the vacuum wave functional. Such expansions appear to be valid only for slowly varying fields, but by exploiting analyticity in a complex scale parameter we can reconstruct the contribution from rapidly varying fields.Comment: 39 pages, 16 figures, LaTeX2e using package graphic

    Overview About Lipid Structure

    Get PDF

    The Speed of Light and the Hubble Parameter: The Mass-Boom Effect

    Get PDF
    We prove here that Newtons universal gravitation and momentum conservation laws together reproduce Weinbergs relation. It is shown that the Hubble parameter H must be built in this relation, or equivalently the age of the Universe t. Using a wave-to-particle interaction technique we then prove that the speed of light c decreases with cosmological time, and that c is proportional to the Hubble parameter H. We see the expansion of the Universe as a local effect due to the LAB value of the speed of light co taken as constant. We present a generalized red shift law and find a predicted acceleration for photons that agrees well with the result from Pioneer 10/11 anomalous acceleration. We finally present a cosmological model coherent with the above results that we call the Mass-Boom. It has a linear increase of mass m with time as a result of the speed of light c linear decrease with time, and the conservation of momentum mc. We obtain the baryonic mass parameter equal to the curvature parameter, omega m = omega k, so that the model is of the type of the Einstein static, closed, finite, spherical, unlimited, with zero cosmological constant. This model is the cosmological view as seen by photons, neutrinos, tachyons etc. in contrast with the local view, the LAB reference. Neither dark matter nor dark energy is required by this model. With an initial constant speed of light during a short time we get inflation (an exponential expansion). This converts, during the inflation time, the Plancks fluctuation length of 10-33 cm to the present size of the Universe (about 1028 cm, constant from then on). Thereafter the Mass-Boom takes care to bring the initial values of the Universe (about 1015 gr) to the value at the present time of about 1055 gr.Comment: 15 pages, presented at the 9th Symposium on "Frontiers of Fundamental Physics", 7-9 Jan. 2008, University of Udine, Italy. Changed content

    Existence of Many Positive Nonradial Solutions for a Superlinear Dirichlet Problem on thin Annuli

    Get PDF
    We study the existence of many positive nonradial solutions of a superlinear Dirichlet problem in an annulus in RN. Our strategy consists of finding the minimizer of the energy functional restricted to the Nehrai manifold of a subspace of functions with symmetries. The minimizer is a global critical point and therefore is a desired solution. Then we show that the minimal energy solutions in different symmetric classes have mutually different energies. The same approach has been used to prove the existence of many sign-changing nonradial solutions (see [5])

    Estimating the impact of natural and anthropogenic emissions on cloud chemistry: the influence of organic compounds

    No full text
    International audienceIn order to estimate the anthropogenic influence of gas and aerosol emissions from the Petroleum Industry in maritime zones with clouds of small vertical extent, a numerical 1D Eulerian cloud-chemical model with detailed microphysics (Alfonso and Raga, 2002) is used to simulate the influence of water soluble organic compounds (WSOC) and organic+inorganic gas emissions on cloud development. Following Mircea et al. (2002), we tested the sensitivity of the cloud and precipitation development in the classical inorganic case (CIC) and the inorganic+organic case (IOC) with respect to CCN compositions. The results indicate an increase in the droplet concentration for the IOC, and a delay in the development of precipitation. The pH spectral evolution was studied during both the development and precipitation stages. The influence of the diffusion of formic acid and its generation by oxidation of hydrated formaldehyde in the aqueous phase result in a reduction in the pH of precipitation in the range between 0.05 and 0.15 pH units (from 1 to 3%) for the high ambient SO2 concentration (20 ppb) and between 0.2?0.5 pH units (from 4 to 10%) for the low ambient SO2 concentration (1 ppb) case
    corecore