1,015 research outputs found
The YouTube creators' community: challenging the rules of traditional media production and broadcast
A Diagram Is Worth A Dozen Images
Diagrams are common tools for representing complex concepts, relationships
and events, often when it would be difficult to portray the same information
with natural images. Understanding natural images has been extensively studied
in computer vision, while diagram understanding has received little attention.
In this paper, we study the problem of diagram interpretation and reasoning,
the challenging task of identifying the structure of a diagram and the
semantics of its constituents and their relationships. We introduce Diagram
Parse Graphs (DPG) as our representation to model the structure of diagrams. We
define syntactic parsing of diagrams as learning to infer DPGs for diagrams and
study semantic interpretation and reasoning of diagrams in the context of
diagram question answering. We devise an LSTM-based method for syntactic
parsing of diagrams and introduce a DPG-based attention model for diagram
question answering. We compile a new dataset of diagrams with exhaustive
annotations of constituents and relationships for over 5,000 diagrams and
15,000 questions and answers. Our results show the significance of our models
for syntactic parsing and question answering in diagrams using DPGs
Sensitive methods for estimating the anchoring strength of nematic liquid crystals on Langmuir-Blodgett monolayers of fatty acids
The anchoring of the nematic liquid crystal
N-(p-methoxybenzylidene)-p-butylaniline (MBBA) on Langmuir-Blodgett monolayers
of fatty acids (COOHCH) was studied as a function of the length
of the fatty acid alkyl chains, (). The monolayers were
deposited onto ITO-coated glass plates which were used to assemble sandwich
cells of various thickness that were filled with MBBA in the nematic phase. The
mechanism of relaxation from the flow-induced quasi-planar to the
surface-induced homeotropic alignment was studied for the four decreases
linearly with increasing the length of the alkyl chains which suggests that
the Langmuir-Blodgett film plays a role in the phenomenon. This fact was
confirmed by a sensitive estimation of the anchoring strength of MBBA on the
fatty acid monolayers after anchoring breaking which takes place at the
transition between two electric-field--induced turbulent states, denoted as
DSM1 and DSM2. It was found that the threshold electric field for the anchoring
breaking, which can be considered as a measure of the anchoring strength, also
decreases linearly as increases. Both methods thus possess a high
sensitivity in resolving small differences in anchoring strength. In cells
coated with mixed Langmuir-Blodgett monolayers of two fatty acids ( and
) a maximum of the relaxation speed was observed when the two acids were
present in equal amount. This observation homeotropic cells by changing the
ratio between the components of the surfactant film.Comment: LaTeX article, 20 pages, 15 figures, 17 EPS files. 1 figure added,
references moved. Submitted to Phys. Rev.
Coherent Fe-rich nano-scale perovskite oxide phase in epitaxial Sr2FeMoO6 films grown on cubic and scandate substrates
We report the growth of high-quality epitaxial Sr2FeMoO6 (SFMO) thin films on various unconventional oxide substrates, such as TbScO3, DyScO3, and Sr2Al0.3Ga0.7TaO6 (SAGT) as well as on the most commonly used one, SrTiO3 (STO), by pulsed laser deposition. The films were found to contain a foreign nano-scale phase coherently embedded inside the SFMO film matrix. Through energy dispersive X-ray spectroscopy and scanning transmission electron microscopy, we identified the foreign phase to be Sr2−xFe1+yMo1−yO6, an off-stoichiometric derivative of the SFMO compound with Fe rich content (y ≈ 0.6) and a fairly identical crystal structure to SFMO. The films on STO and SAGT exhibited very good magnetic properties with high Curie temperature values. All the samples have fairly good conducting behavior albeit the presence of a foreign phase. Despite the relatively large number of items of the foreign phase, there is no significant deterioration in the properties of the SFMO films. We discuss in detail how magneto-transport properties are affected by the foreign phase.
INT
Contrast Mechanisms for the Detection of Ferroelectric Domains with Scanning Force Microscopy
We present a full analysis of the contrast mechanisms for the detection of
ferroelectric domains on all faces of bulk single crystals using scanning force
microscopy exemplified on hexagonally poled lithium niobate. The domain
contrast can be attributed to three different mechanisms: i) the thickness
change of the sample due to an out-of-plane piezoelectric response (standard
piezoresponse force microscopy), ii) the lateral displacement of the sample
surface due to an in-plane piezoresponse, and iii) the electrostatic tip-sample
interaction at the domain boundaries caused by surface charges on the
crystallographic y- and z-faces. A careful analysis of the movement of the
cantilever with respect to its orientation relative to the crystallographic
axes of the sample allows a clear attribution of the observed domain contrast
to the driving forces respectively.Comment: 8 pages, 8 figure
Metal-Ferroelectric-Metal heterostructures with Schottky contacts I. Influence of the ferroelectric properties
A model for Metal-Ferroelectric-Metal structures with Schottky contacts is
proposed. The model adapts the general theories of metal-semiconductor
rectifying contacts for the particular case of metal-ferroelectric contact by
introducing: the ferroelectric polarization as a sheet of surface charge
located at a finite distance from the electrode interface; a deep trapping
level of high concentration; the static and dynamic values of the dielectric
constant. Consequences of the proposed model on relevant quantities of the
Schottky contact such as built-in voltage, charge density and depletion width,
as well as on the interpretation of the current-voltage and capacitance-voltage
characteristics are discussed in detail.Comment: 14 pages with 4 figures, manuscript under revision at Journal of
Applied Physics for more than 1 year (submitted May 2004, first revision
September 2004, second revision May 2005
Ferroelectric Nanotubes
We report the independent invention of ferroelectric nanotubes from groups in
several countries. Devices have been made with three different materials: lead
zirconate-titanate PbZr1-xTixO3 (PZT); barium titanate BaTiO3; and strontium
bismuth tantalate SrBi2Ta2O9 (SBT). Several different deposition techniques
have been used successfully, including misted CSD (chemical solution
deposition) and pore wetting. Ferroelectric hysteresis and high optical
nonlinearity have been demonstrated. The structures are analyzed via SEM, TEM,
XRD, AFM (piezo-mode), and SHG. Applications to trenching in Si dynamic random
access memories, ink-jet printers, and photonic devices are discussed.
Ferroelectric filled pores as small as 20 nm in diameter have been studied
Dynamic Behavior in Piezoresponse Force Microscopy
Frequency dependent dynamic behavior in Piezoresponse Force Microscopy (PFM)
implemented on a beam-deflection atomic force microscope (AFM) is analyzed
using a combination of modeling and experimental measurements. The PFM signal
comprises contributions from local electrostatic forces acting on the tip,
distributed forces acting on the cantilever, and three components of the
electromechanical response vector. These interactions result in the bending and
torsion of the cantilever, detected as vertical and lateral PFM signals. The
relative magnitudes of these contributions depend on geometric parameters of
the system, the stiffness and frictional forces of tip-surface junction, and
operation frequencies. The dynamic signal formation mechanism in PFM is
analyzed and conditions for optimal PFM imaging are formulated. The
experimental approach for probing cantilever dynamics using frequency-bias
spectroscopy and deconvolution of electromechanical and electrostatic contrast
is implemented.Comment: 65 pages, 15 figures, high quality version available upon reques
ImageNet Large Scale Visual Recognition Challenge
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in
object category classification and detection on hundreds of object categories
and millions of images. The challenge has been run annually from 2010 to
present, attracting participation from more than fifty institutions.
This paper describes the creation of this benchmark dataset and the advances
in object recognition that have been possible as a result. We discuss the
challenges of collecting large-scale ground truth annotation, highlight key
breakthroughs in categorical object recognition, provide a detailed analysis of
the current state of the field of large-scale image classification and object
detection, and compare the state-of-the-art computer vision accuracy with human
accuracy. We conclude with lessons learned in the five years of the challenge,
and propose future directions and improvements.Comment: 43 pages, 16 figures. v3 includes additional comparisons with PASCAL
VOC (per-category comparisons in Table 3, distribution of localization
difficulty in Fig 16), a list of queries used for obtaining object detection
images (Appendix C), and some additional reference
Characterizing genomic alterations in cancer by complementary functional associations.
Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes
- …
