9,989 research outputs found

    Nonequilibrium structures and dynamic transitions in driven vortex lattices with disorder

    Full text link
    We review our studies of elastic lattices driven by an external force FF in the presence of random disorder, which correspond to the case of vortices in superconducting thin films driven by external currents. Above a critical force FcF_c we find two dynamical phase transitions at FpF_p and FtF_t, with Fc<Fp<FtF_c<F_p<F_t. At FpF_p there is a transition from plastic flow to smectic flow where the noise is isotropic and there is a peak in the differential resistance. At FtF_t there is a sharp transition to a frozen transverse solid where both the transverse noise and the diffussion fall down abruptly and therefore the vortex motion is localized in the transverse direction. From a generalized fluctuation-dissipation relation we calculate an effective transverse temperature in the fluid moving phases. We find that the effective temperature decreases with increasing driving force and becomes equal to the equilibrium melting temperature when the dynamic transverse freezing occurs.Comment: 8 pages, 3 fig

    Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium

    Full text link
    We numerically study the geometry of a driven elastic string at its sample-dependent depinning threshold in random-periodic media. We find that the anisotropic finite-size scaling of the average square width w2ˉ\bar{w^2} and of its associated probability distribution are both controlled by the ratio k=M/Lζdepk=M/L^{\zeta_{\mathrm{dep}}}, where ζdep\zeta_{\mathrm{dep}} is the random-manifold depinning roughness exponent, LL is the longitudinal size of the string and MM the transverse periodicity of the random medium. The rescaled average square width w2ˉ/L2ζdep\bar{w^2}/L^{2\zeta_{\mathrm{dep}}} displays a non-trivial single minimum for a finite value of kk. We show that the initial decrease for small kk reflects the crossover at k∼1k \sim 1 from the random-periodic to the random-manifold roughness. The increase for very large kk implies that the increasingly rare critical configurations, accompanying the crossover to Gumbel critical-force statistics, display anomalous roughness properties: a transverse-periodicity scaling in spite that w2ˉ≪M\bar{w^2} \ll M, and subleading corrections to the standard random-manifold longitudinal-size scaling. Our results are relevant to understanding the dimensional crossover from interface to particle depinning.Comment: 11 pages, 7 figures, Commentary from the reviewer available in Papers in Physic

    Integrated model for the hydro-mechanical effects of vegetation against shallow landslides

    Get PDF
    Shallow landslides are instability events that lead to dramatic soil mass wasting in sloping areas and are commonly triggered by intense rainfall episodes. Vegetation may reduce the likelihood of slope failure through different hydro-mechanical mechanisms that take place at the soil-plant-atmosphere interface. However, while vegetation’s mechanical contribution has been widely recognized, its hydrological effects have been poorly quantified. In addition, most of the existing models lack a holistic approach, require difficult to measure parameters or are commercially based, making them hardly transferable to land planners and other researchers.In this paper an integrated, robust and reproducible model framework is proposed and evaluated with the aim of assessing the hydro-mechanical effects of different vegetation types on slope stability using easily measureable and quantifiable input parameters. The output shows that the model framework is able to simulate the hydro-mechanical effects of vegetation in a realistic manner and that it can be readily applied to any vegetation, soil and climate types. It also demonstrates that vegetation has positive hydro-mechanical effects against shallow landslides, where plant biomass and evapotranspiration play an important role
    • …
    corecore