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Abstract 7 

The use of plants against shallow landslides and erosion has received considerable attention over time 8 

as it is believed that vegetation provides mechanical and hydrological reinforcement to the soil. 9 

However, neither the soil-root mechanical reinforcement under different hydrological regimes, nor the 10 

hydrological effects of vegetation on soil reinforcement have been properly studied.  11 

This paper explores how plants are able to provide mechanical and hydrological reinforcement to soil 12 

under different soil hydrological regimes. To do this, we first defined a novel, simple and reproducible 13 

laboratory protocol to investigate how changes in soil moisture affect the mechanical effects of 14 

vegetation on soil reinforcement. We then explored how plants modify the relevant soil properties and 15 

what implications this may have on soil reinforcement. We finally attempted to evaluate the suction 16 

stress functions for both fallow and vegetated soil, as a proxy to quantify the hydrological plant-derived 17 

soil reinforcement. 18 

The results showed that plants significantly increased the soil organic matter and the angle of internal 19 

friction, both with relevant hydro-mechanical implications. Vegetation presented a significant 20 

mechanical soil reinforcement that was higher at the soil’s hydrological transition regime, suggesting 21 

the existence of optimum soil moisture content for an effective soil-root reinforcement response. The 22 

hydrological regimes also imposed differences in terms of the hydrological reinforcement, which 23 

differed between fallow and vegetated soil. However, the derived suction stress function for the fallow 24 

soil in the experiments showed differences when compared to the theoretical predictions.  25 

Our findings provide a good basis for future research to enhance our understanding of the nature of 26 

plant-soil composites and shed light on the sustainable use of vegetation against shallow landslides.  27 

Keywords: plant-soil, reinforcement, hydrological regimes, suction stress.  28 
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1. INTRODUCTION 43 

 44 

The use of plants against landslides and erosion has received considerable attention during the past 45 

decades (e.g. Wu et al., 1979; Stokes et al., 2014). Plants effectively provide reinforcement to the soil 46 

matrix (Waldron, 1977). In engineering, the soil-root reinforcement is normally attributed to the 47 

transfer of mechanical energy from the roots to the soil (Ekanayake and Phillips, 1999) given the 48 

differences between both root and soil materials (Greenway, 1987) converging into plant-soil 49 

composites (e.g. Thorne, 1990).  50 

The provision of plant-soil hydrological reinforcement, however, has received less consideration 51 

(Stokes et al., 2014). In part, this is due to the difficulties of integrating the hydrological effects of 52 

vegetation into the evaluation of soil strength. Moreover, the performance of the plant-soil 53 

reinforcement response may also be influenced by the soil’s hydrological conditions (e.g. moisture 54 

content). A few studies have tried to address this gap (e.g. Pollen, 2007; Fan and Su, 2008; Mickovski 55 

et al., 2009),  but overall it has largely been neglected.  56 

Soil moisture content is subject to seasonal variations (Rodriguez-Iturbe and Porporato, 2004). Given 57 

the increased likelihood of landslide occurrence associated to certain seasons and hydrological 58 

conditions (Lu and Godt, 2013), it is of the utmost importance to enhance our understanding on how 59 

the plant-soil reinforcement response may change under these soil moisture variations.       60 

Within a mass instability context, the soil strength (τ) is measured as the soil resistance to shear. This is 61 

commonly quantified with the Coulomb´s law, which represents the maximum possible state of soil 62 

stress by means of a graphical line known as the ‘failure envelope’ (Head and Epps, 2011). A failure 63 

envelope is defined through the cohesion and angle of internal friction of the soil (c’ and ϕ’, 64 

respectively). It is believed that ϕ’ does not change when roots are present in the soil (Waldron and 65 

Dakesian, 1981; Gray and Ohashi, 1983; Ghestem et al., 2013) and, consequently, failure envelopes are 66 

not normally portrayed for vegetated soils. The same methodology used to find a soil´s failure 67 

envelope, known as shear testing (Head and Epps, 2011), is also used to evaluate the additional shear 68 

strength roots provide to soil (Waldron, 1977; Ekanayake and Phillips, 1999; Mickovski et al., 2009;  69 

Ghestem et al., 2013).  70 

Shear tests carried on vegetated soil are normally performed under saturated (e.g. Waldron and 71 

Dakesian, 1981) or constant moisture levels (e.g. Mickovski et al., 2005; Mickovski et al., 2008; 72 

Ghestem et al., 2013). As it has been observed that the moisture content may determine the mode by 73 

which plant roots confer energy to the soil (i.e. influence the mode of root failure within the soil-root 74 

continuum; Ennos, 1990), the moisture content should be taken into consideration. The few studies 75 

attempting to explore the effects of the moisture content on soil-root reinforcement have taken care to 76 

mimic natural conditions of root reinforcement (e.g. Pollen, 2007; Fan and Su, 2008), but have not 77 

considered the range of different soil hydrological regimes possible (Vanapalli et al., 1996). 78 

The soil hydrological regimes must be defined on the basis of the soil water characteristic curve 79 

(SWCC; van Genuchten, 1980). They can be divided into Saturated Regime (i.e. all soil pores are full 80 

of water), Transition Regime (i.e. air begins to enter in the soil-pore space) and Residual Regime (i.e. 81 

just films of water are retained around the soil particles) (e.g. Lu and Likos, 2004). The hydrological 82 
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regimes are relevant because it is known that soil shear strength changes with the amount of water kept 83 

within the soil-pore space (Vanapalli et al., 1996).     84 

To include the soil shear strength effects from the mechanisms that take place within the soil-pore 85 

space under variable hydrological regimes, Coulomb´s law has been updated over the years (i.e. 86 

effective stress principle: Therzaghi, 1943; Bishop, 1954; Fredlund and Morgensten, 1977). The effects 87 

conferred by the soil-root mechanical reinforcement have also been included (e.g. Wu et al., 1979). In 88 

an attempt to unify the different stresses that act within the soil-pore space (i.e. pore-water pressure, 89 

pore-air pressure, physical-chemical forces at the particle contacts), Lu and Likos (2004) developed the 90 

unified effective stress principle, which considers a unique stress variable, the suction stress (σ
s
), 91 

featured in the Coulomb’s law (failure envelope) for variably saturated conditions as: 92 

τ=c’+ (σ-ua-σ
s
)tanϕ’  93 

where ua is the pore-air pressure, normally assumed to be at the atmospheric pressure and assigned a 94 

value of 0 kPa; σ is the normal stress; c’ and ϕ’ are the soil effective cohesion and  the angle of internal 95 

friction, respectively,  and τ is the shear stress (strength) of the soil.  96 

The suction stress (σ
s
) is meant to have the form of a characteristic function of the soil (i.e. SSCC; Lu 97 

and Likos, 2006) based on the SWCC fitting parameters – i.e. α: inverse of the air entry pressure and n: 98 

pore-size distribution parameter (Lu et al., 2010; Song et al., 2012). In addition, σ
s
 is directly related to 99 

the soil apparent cohesion (c’), which actually mobilises the suction stress to shear resistance under the 100 

shear failure of soils (Lu and Godt, 2013). Thus, SSCC could be appraised by means of shear testing 101 

under different moisture contents or matric suction levels (Lu and Likos, 2004, 2006) by extrapolating 102 

the failure envelopes to intercept with the negative side of the abscissa axis (i.e. σ𝑠 =  − 𝑐′ 𝑡𝑎𝑛𝜙′⁄ ), 103 

provided that changes in the degree of saturation, or matric suction (ua-uw), will lead to the upward shift 104 

of the failure envelope (Vanapalli et al., 1996; Lu and Likos, 2006; Kim et al., 2013).  105 

The direct dependency of σ
s 

on ua-uw allows the former to be considered as a proxy to quantify the 106 

plant-soil hydrological reinforcement. The matric suction increase derived from plant water uptake or 107 

evapotranspiration processes is one of the most recognisable hydrological effects provided by the 108 

vegetation on the soil (Rodriguez-Iturbe and Porporato, 2005). However, it cannot be employed alone 109 

to quantify the plant-soil hydrological reinforcement as the mechanisms occurring within the 110 

unsaturated soil-pore space are complex (Lu and Likos, 2004). Hence, the soil hydro-mechanical 111 

properties (e.g. α and n) must be regarded in combination with ua-uw for the quantification of σ
s
 (e.g. 112 

Lu et al., 2010) and, thus, approaching the plant-soil hydrological reinforcement.   
 
  113 

In addition, plants, as living organisms, modify the environment they live in and, in particular, plant 114 

roots alter the surrounding soil (i.e. rhizosphere; e.g. Hinsinger et al., 2009) in many ways. These 115 

changes are demonstrated not only as enhancements of the soil matrix structure and strength but also as 116 

alterations of the mechanisms governing soil physicochemical processes, such as the retention and flow 117 

of water in the soil (Carminati et al., 2010; Scholl et al., 2014). Hence, when plants are present in the 118 

soil one should consider a new material (i.e. plant-soil composite) with specific hydro-mechanical 119 

properties (Scanlan, 2009). However, testing the properties and behaviour of plant-soil composites, in 120 

general, and soils under unsaturated conditions, in particular, is difficult – there is a need to develop 121 

simpler and quicker protocols.      122 
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The aim of this paper is to explore how plants are able to provide mechanical and hydrological 123 

reinforcement to the soil under different soil hydrological regimes. To do this, we first define a novel, 124 

simple and reproducible laboratory protocol to investigate how changes in soil moisture modify the 125 

mechanical response of vegetation upon soil reinforcement. We then look at how plants modify the soil 126 

properties and what implications this may have for soil reinforcement. Finally we attempt to evaluate 127 

the suction stress functions for both fallow and vegetated soil, as a proxy to quantify the plant-derived 128 

soil hydrological reinforcement.    129 

 130 

2. MATERIALS & METHODS 131 

 132 

2.1. Soil type and testing program 133 

 134 

A silty sand soil (Sand: 79.82%; Silt: 5.85%; Clay: 3.08%; BS 1377 Part 1:1990) was collected from 135 

three sampling points at the crest of a landslide-prone slope in Catterline Bay, Northeast Scotland, UK, 136 

from a depth of between 300 and 600 mm below ground level (b.g.l). The soil had intermediate to low 137 

plasticity, (liquid limit, wL, of 36.07 %; plastic limit, wP, of 10.45 %; BS 1377 Part 2:1990) and a low 138 

organic matter (OM) content (1.16±0.01 %; OM baseline; Schulte and Hopkins, 1996).  139 

The soil was oven-dried at 100ºC for 48 hours after which it was pulverized with pestle and mortar and 140 

sieved through a 2 mm sieve. Then, the sample was split into two replicate treatments – i.e. fallow and 141 

vegetated, respectively.  142 

The fallow replicates (4 in total) were progressively taken to saturation level by adding deionized water 143 

while mixing the soil-water mixture thoroughly with a spatula. Water was added until no soil 144 

aggregates were present and a shiny film was observed atop. Once saturated, the replicates were 145 

covered with aluminium foil and refrigerated for 48 h at 4º C, after which they were removed from the 146 

fridge and let to dry at 20ºC up to the desired moisture regime prior to shear testing (Fig. 1a).    147 

The vegetated replicates (4 in total) were placed in 650 ml plastic trays (46.2 mm deep) and sown with 148 

7 g of alfalfa (Medicago sativa L.) seeds spread evenly over the soil surface. Each sample was gently 149 

watered, covered with a plastic lid and left in darkness until the seeds germinated. Once they 150 

germinated, the trays were placed under an incandescent bulb of 60 W and the alfalfa was left to grow 151 

for 3 weeks without any fertiliser (Figs. 1b and 1c). Each sample was watered daily with 100 ml of tap 152 

water. Once the vegetated replicates were ready for shear testing, they were taken to water-saturation 153 

level and left to dry until they reached the desired moisture regime, as with the fallow samples.   154 

 155 

Each replicate from both the fallow and vegetated treatments was tested in shear under three different 156 

hydrological regimes (I: saturated regime, II: transition regime and III: residual regime; Vanapalli et 157 

al., 1996). The hydrological regimes were identified on the basis of the soil water characteristic curve 158 

(SWCC; Fig. 2) to mimic the natural environmental conditions. SWCC was evaluated onsite at the 159 

three different sampling locations in Catterline Bay by collecting coupled measurements of the matric 160 

suction (ua-uw; kPa) and the moisture content (w; %) over time (Fredlund and Rahardjo, 1993). Then, 161 

van Genuchten’s SWCC function (van Genuchten, 1980) was iteratively fitted using R 3.2.1 (R Core 162 
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Team, 2015). Hence, each replicate was tested at ua-uw = 0 kPa (regime I), ua-uw = 17 kPa (regime II) 163 

and ua-uw = 78.5 kPa (regime III). Two extra ua-uw levels were considered – i.e. 3 kPa and 13 kPa for 164 

fallow and vegetated replicates, respectively, to enhance the number of repeats at the transition points 165 

between the saturated and transition moisture regimes.  The matric suction was monitored in all 166 

samples by measuring the pore-water pressure with two UMS
®
 T5 tensiometers (Figs. 1a-c) inserted at 167 

ca. 20 mm b.g.l. and connected to a Campbell CR1000 data-logger until they achieved the desired 168 

value for shear testing.  169 

Four drained direct shear test trials (i.e. shear stages) were carried out per replicate and hydrological 170 

regime (total of 16 fallow and 16 vegetated). The shear tests were performed in a Matest Shearlab 171 

shear-box (Fig. 1d; BS 1377-4, 1990) machine using a 23.27 mm depth by 48.95 mm diameter sample 172 

and shearing at a rate of 0.5 mm min
-1

 under four normal stresses (i.e. shear stages: 26.04 kPa, 78.11 173 

kPa, 104.15 kPa and 156.22 kPa; Head and Epps, 2011). The specimens to be sheared were carefully 174 

sampled from their containers with a cylindrical knife of the same dimensions as the shear box (Fig. 175 

1d), inserted into the shear box with no additional compaction and sheared at the middle plane (i.e. ca. 176 

11.6 mm depth). For the case of the vegetated replicates, the vegetation was clipped to the ground level 177 

with a precision knife before sampling and inserting into the shear-box.  In between the shear stages, 178 

the replicates of both fallow and vegetated soil were kept covered with aluminium foil in the fridge at 179 

4ºC from which a small sub-sample was collected to determine the gravimetric moisture content (Head, 180 

1980).  181 

After shear testing, each soil sample was oven-dried at 100ºC for 24 hours to obtain the soil dry mass, 182 

and then placed in a muffle at 500ºC during 2 hours to determine the OM content by mass difference 183 

respect to the dry sample mass (the LOI method; Schulte and Hopkins, 1996). The OM gain was then 184 

calculated for the vegetated replicates as the OM mass percentage gain with respect to the OM baseline 185 

(i.e. 1.16±0.01 %). For comparison purposes, the root dry mass was determined in one of the vegetated 186 

replicates (i.e. regime III: 78 kPa). To do so, the roots for each sub-replicate were separated by hand 187 

from the soil with steel tweezers. Then, the root dry mass was determined by oven-drying the separated 188 

material at 70ºC for 24 hours. In addition, the dry bulk density was estimated as the ratio between the 189 

sheared dry soil mass and the volume of the shear box.   190 

 191 

 192 

2.2. Soil-root mechanical reinforcement  193 

 194 

The soil-root mechanical reinforcement was assessed by comparing the stress-strain curves between the 195 

fallow and vegetated replicates derived from the shear testing trials (e.g. Mickovski et al, 2008). The 196 

stress-strain curves were evaluated at the three considered moisture regimes (see 2.1) and under three 197 

different normal stresses (26 kPa, 78.11 kPa and 104.15/156.22 kPa). The fallow soil repeat at 0 kPa 198 

could not be tested at 156.22 kPa of normal stress due to the effects of the normal confining pressure 199 

on this specimen, as its plasticity exceeded the liquid limit (i.e. soil specimen behaved as a liquid; 200 

Craig, 2004). Thus, the maximum normal stress compared between fallow and vegetated treatments for 201 

the saturated regime was 104.15 kPa.  202 
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From each stress-strain curve a series of ‘mechanical properties’ were retrieved (Ghestem et al., 2013). 203 

Firstly, where a clear stress-strain curve peak was not obtained, a yield point (τyield; kPa) was chosen for 204 

each curve as the first encountered inflexion point of the curve, which is meant to represent the 205 

transition between elastic and plastic behaviour. The tangential strain at which the yield point was fixed 206 

was considered to be the strain at the yield point (εyield; %). The area below the stress-strain curve up to 207 

the yield point was assumed to be the deformation energy (J; J m
-3

). The difference between the 208 

vegetated and fallow deformation energies – i.e. Jgain=Jvegetated – Jfallow (Ekanayake and Phillips, 1999), 209 

shear strength – i.e. ΔSy = τyield-vegetated-τyield-fallow (Waldron et al., 1983) as well as the root reinforcement 210 

efficiency at the yield point –i.e. REy= ΔSy/τfallow (Fan and Su, 2008), were regarded as indicators of 211 

soil-root mechanical reinforcement. Additionally, the shear modulus (G; kPa) was calculated as the 212 

initial slope of each stress-strain curve.      213 

 214 

2.3. Failure envelopes and suction stress function  215 

 216 

A Coulomb´s failure envelope was obtained for each moisture regime and for the fallow and vegetated 217 

replicates, respectively (i.e. 4 envelopes per treatment). Each failure envelope was obtained by fitting a 218 

regression line in R 3.2.1 (R Core Team, 2015) to the point clouds formed between the maximum shear 219 

resistance and the normal stress (Head and Epps, 2011). From each failure envelope the soil cohesion 220 

(c’: intercept with shear stress axis) and angle of internal friction (ϕ’: inverse tangent of the failure 221 

envelope’s slope) were retrieved. Then, each failure envelope was extrapolated to intercept the normal 222 

stress axis. Each intercept point was considered to stand for the suction stress (σ
s
; kPa; Lu and Likos, 223 

2006; Kim et al., 2013; Lu and Godt, 2013), which was then plotted against the ua-uw level obtained 224 

from the relevant tests. A new curve (the suction stress function; SSCC) was iteratively fitted in R 3.2.1 225 

for the fallow and vegetated sample points respectively, until the maximum goodness of fit (R
2
) was 226 

achieved.  To do so, values were given to α (inverse of the air entry pressure; kPa
-1

) and n (pore-size 227 

distribution parameter) in the function for the determination of the suction stress (Lu et al., 2010; Eq. 228 

1):   229 

 230 

𝜎𝑠 =  −
(𝑢𝑎−𝑢𝑤)

(1+(𝛼(𝑢𝑎−𝑢𝑤)𝑛)
𝑛−1

𝑛

         231 

 232 

 233 

2.4. Statistical analysis  234 

 235 

The distribution density was plotted for all studied independent variables (i.e. c’, ϕ’, OM, ρb, σ
s
, τyield, J, 236 

G, εyield) to check for normality. Kruskal-Wallis tests were carried out to infer statistical differences 237 

between the non-normally distributed variables and the two treatments (i.e. fallow and vegetated) while 238 

ANOVA tests were implemented for the normally distributed variables at 95% and 99% confidence 239 

levels. The same tests were used to find statistical differences between each independent variable and 240 

the tested hydrological regimes and normal stress levels, respectively. Where statistically significant 241 

differences were encountered, the differences within the groups were evaluated by means of Wilcoxon 242 

Eq. 1 
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tests and t-tests for the non-normal and normally distributed variables, respectively. The same 243 

procedures were followed for the soil-root reinforcement indicators (i.e. Jgain, ΔSy and REy). In 244 

addition, the correlation between these indicators and the OM was assessed by means of Pearson’s 245 

correlation tests. The latter tests were also implemented to evaluate the potential relationships between 246 

all of the considered variables. 247 

The statistical differences between the obtained failure envelopes were assessed by comparing the 248 

envelopes’ slope (s) and their respective standard errors (SE) through the estimation of a t-statistic 249 

(𝑡 = 𝑠1 − 𝑠2 √𝑆𝐸12 + 𝑆𝐸22⁄ ; Paternoster, 1998) evaluated at the 95% and 99% confidence levels.  250 

Effects derived from the treatment (i.e. fallow or vegetated), hydrological regime, organic matter and 251 

dry bulk density (ρb) on the failure envelopes’ parameters (c’: effective cohesion and ϕ’: angle of 252 

internal friction) and the suction stress were evaluated by means of Pearson’s correlation tests. 253 

All statistical analyses were carried using the statistical software R 3.2.1 (R Core Team, 2015).   254 

 255 

3. RESULTS 256 

 257 

 258 

 259 

 260 

Table 1. Soil-root mechanical reinforcement properties for the three tested hydrological regimes (i.e. I: 261 
ua-uw= 0 kPa II: ua-uw= 17 kPa III: ua-uw=78 kPa) and the different normal stresses (σN, kPa); τyield: 262 
shear strength at yield point (kPa), εyield: strain at yield point (%), Jyield: deformation energy at yield 263 
point (J m

-3
), Jgain: deformation energy gain for vegetated respect to fallow soil (J m

-3
), G: shear 264 

modulus (kPa), ΔSy: shear strength increase for vegetated respect to fallow soil (kPa), REy: root 265 
efficiency at yield point. 266 

Treatment ua-uw 

(kPa) 

σN 

(kPa) 

τyield 

(kPa)
 

εyield  

(%) 

Jyield  

(J m-3) 

Jgain  

(J m
-3

) 

G 

(kPa) 

ΔSy 

(kPa) 

REy 

Vegetated 0 

 

 

 

 

 

26.03 14.87 3.00 33.11 13.96 20.21 6.90 0.87 

Vegetated 78.11 34.01 6.00 119.95 76.88 20.37 5.32 0.18 

Vegetated 104.15 50.48 8.00 255.69 207.28 14.86 17.54 0.53 

Fallow 26.03 7.97 8.00 19.14 - 10.89 - - 

Fallow 78.11 28.69 3.00 43.07 - 54.59 - - 

Fallow 104.15 32.94 2.50 48.41 - 67.20 - - 

Vegetated
 

17 

 

 

 

 

26.03 39.85
 

2.50 60.62 39.32 83.84 19.23 0.93 

Vegetated
 

78.11 53.67
 

2.50 112.89 82.55 105.41 34.01 1.73 

Vegetated
 

156.22 66.42
 

6.00 293.79 136.28 60.11 35.60 1.15 

Fallow
 

26.03 20.72
 

7.00 21.30 - 21.30 - - 

Fallow
 

78.11 19.66
 

6.00 30.35 - 31.81 - - 

Fallow
 

156.22 30.82
 

3.00 157.52 - 27.97 - - 

Vegetated 78.5 

 

26.03 41.44 6.00 147.36 46.34 58.15 5.84 0.16 

Vegetated 78.11 43.57 2.50 90.93 -43.06 68.41 -14.15 -0.24 

Vegetated 156.22 60.58 3.00 124.07 -88.25 92.30 -16.47 -0.21 

Fallow 26.03 35.60 4.00 101.02 - 66.42 - - 

Fallow 78.11 57.92 3.00 133.99 - 101.02 - - 

Fallow 156.22 77.05 4.00 212.32 - 91.21 - - 

 267 

 268 

3.1. Soil-root reinforcement  269 

 270 
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A clear increase of the soil shear strength was observed in most of the trials (Fig. 3) when the soil was 271 

vegetated. The yield strength (τyield; Table 1) was generally higher for the vegetated treatments and 272 

increased with the normal stress. There were statistical differences in τyield with regard to the applied 273 

normal stress (F=4.49 df=3 p<0.05), where the maximum applied normal stress (i.e. σ =156.22 kPa) led 274 

to significantly higher τyield (t=-3.40 df=8 p<0.01). However, no statistically significant differences 275 

were detected in terms of τyield between the treatments as τyield tended to be relatively similar between 276 

vegetated and fallow soil under the residual regime (Fig. 3g-i). Additionally, τyield did not show 277 

significant differences between the different hydrological regimes, although the trend differed between 278 

vegetated and fallow treatments (Fig. 4).  279 

In terms of the energy of deformation (J; Table 1), it showed significant differences between fallow and 280 

vegetated treatments (χ
2
=4.32 df=1 p<0.05), where the vegetated soil generally presented higher J. 281 

Also, J differed significantly among the tested normal stresses (χ
2
=10.086 df=3 p<0.05; highly 282 

significant for σ = 156.22 kPa; p<0.001) but did not between the degree of saturation.  283 

The hydrological regimes led to significant differences in terms of the root reinforcement efficiency 284 

(ERy; F=12.41 df=2 p<0.01, Table 1), which was significantly higher (ERy: t=-5.04 df=3 p<0.05) for 285 

the transition moisture regime (II: 17 kPa). Moreover, the shear strength increase (ΔSy; Table 1) also 286 

presented statistically significant differences with the moisture regimes (χ
2
=6.49 df=2 p<0.05). 287 

Although no statistical differences were detected, a similar pattern was seen for the energy gain (Jgain; 288 

Table 1) between the considered treatments, normal stresses or moisture regimes.  289 

The strain at the yield point (εyield; Table 1) did not show significant differences for the investigated 290 

cases and it was found to occur within 2.5% and 8% strain in all cases. On the other hand, the moisture 291 

regimes did lead to significant differences in terms of the shear modulus (G; χ
2
=14.71 df=4 p<0.01), 292 

which was significantly higher for the residual regime (Z=2 p<0.01). In addition, statistically 293 

significant differences in G were detected between the fallow and vegetated treatments for the 294 

transition regime (t=4.17 df=2.22 p<0.05; Table 1). 295 

It is worth noting that Jgain, ΔSy and ERy became negative under the residual moisture regime (III: 78.5 296 

kPa) for the intermediate and highest normal stress tested (Fig. 3; Table 1), implying a low root 297 

reinforcement under this hydrological regime. Furthermore, these three variables (Jgain, ΔSy and ERy) 298 

did not correlate well with the OM (RJgain=0.34; RΔSy=0.36; RERy=0.46).  299 

 300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

3.2 Organic matter gain  310 
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 311 

All vegetated replicates presented a significant OM gain (0.84% to 1.44%; Table 2) with respect to the 312 

baseline (i.e. 1.16±0.01 %). The vegetated treatments exhibited a significantly (F=34.15 p<0.01) higher 313 

OM content when compared to fallow samples. However, no statistical differences were encountered 314 

between the two determination methods for the vegetated treatments.    315 

 316 

3.3 Failure envelopes 317 

 318 

Failure envelopes were fitted with a high goodness of fit (R
2
; Table 2) for all shear testing trials (Fig. 319 

5). The fitted envelopes did not statistically differ among each other for neither type of treatment 320 

(tfallow< 2.015 df=5; tvegetated < 1.89 df=7), nor between the treatments  (t < 1.943 df=6).  321 

However, the angle of internal friction (ϕ’; Table 2; Fig. 5) was shown to be significantly higher 322 

(χ
2
=5.33 df=1 p<0.05) in the vegetated replicates (ϕ’=20.09°- 25.31°) when compared to the fallow 323 

samples (ϕ’=17.86°- 19.84°) in all cases. These differences led, on average, to the following linear 324 

relationship: ϕ’vegetated=1.2ϕ’fallow. Additionally, ϕ’ was highly positively correlated with the organic 325 

matter (R=0.69) and with the bulk density (R=0.86).  326 

On the other hand, the soil cohesion (c’: failure envelope’s intercept; Table 2; Fig. 5) ranged from 2.20 327 

kPa (regime I) to 55.47 kPa (regime III) for the fallow soil and from 10.40 kPa (regime I) to 51.46 kPa 328 

(regime III) for the vegetated soil. It was highly positively correlated with the moisture regime 329 

(R=0.97) and the bulk density (R=0.53). 330 

 331 
Table 2. Shear strength parameters (c’: apparent cohesion,  ϕ’: angle of internal friction), suction stress 332 
(σ

s
), organic matter content (OM) and gain (OMgain) for the different tested replicates, for which matric 333 

suction (ua-uw), gravimetric moisture content (w) and bulk density (ρb) at testing is indicated. Values 334 
indicate mean ± standard deviation.  335 

 336 

 337 

 338 

Treatment ua-uw 

(kPa) 

w (%) ρb (g cm
-3

) c’ 

(kPa) 

ϕ’ (°) R
2
 σ

s
 (kPa) OM (%) OM 

gain  

(%) 

Fallow 0.00 

±0.11 

38.58 

±1.15 

1.61 

±0.16 

2.20 19.21 0.90 -6.32 1.16 

±0.23 

- 

Fallow 3.08 

±0.74 

29.56 

±2.57 

1.60 

±0.18 

5.40 19.84 0.99 -14.97 1.44 

±0.17 

- 

Fallow 16.91 

±0.41 

25.46 

±2.01 

1.59 

±0.13 

14.1

6 

17.86 0.97 -43.94 1.39 

±0.02 

- 

Fallow 78.60 

±9.71 

12.43 

±0.29 

1.53 

±0.15 

55.4

7 

19.61 0.96 -155.65 1.04 

±0.05 

- 

Vegetated 0.67 

±0.09 

39.78 

±3.75 

1.39 

±0.13 

10.4

0 

23.88 0.98 -23.49 2.00 

±0.19 

0.84 

±0.19 

Vegetated 12.96 

±0.67 

24.89 

±4.00 

1.44 

±0.13 

12.4

7 

25.08 0.98 -26.65 2.59 

±0.29 

1.44 

±0.29 

Vegetated 16.94 

±0.80 

23.87 

±3.09 

1.53 

±0.13 

25.9

1 

20.09 0.96 -70.84 2.44 

±0.24 

1.28±0.

24 

Vegetated 78.46 

±0.76 

11.32 

±1.98 

1.17 

±0.07 

51.4

6 

25.31 0.74 -108.81 2.05 

±0.44 

0.89 

±0.44 
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 339 

3.4 Suction stress 340 

 341 

The suction stress (σ
s
; Table 2; Fig. 5) showed an increasing trend with the matric suction for the 342 

fallow and vegetated treatments. Both treatments presented a different σ
s
 curve fit using Eq. 1. The 343 

fitting parameters, α and n, were α=0.05 kPa
-1

 and n=0.6, for the fallow, and α=0.001 kPa
-1

 and n=2, 344 

for the vegetated soil. The goodness of fit (R
2
) was 0.99 and 0.73 for the fallow and vegetated soil, 345 

respectively. Nonetheless, no statistical differences were observed between the two treatments and 346 

none of the considered soil variables (OM and ρb) had a significant effect on σ
s
 besides the matric 347 

suction (R=-0.94) and the soil cohesion (R=-0.98).  348 

 349 

3.5. Correlation tests  350 

 351 

The correlation tests (Fig. 6) showed a highly significant correlation between the yield stress (τyield) and 352 

the suction stress (R=-0.81), the matric suction (R=0.71) and the soil cohesion (R=0.82). However, 353 

τyield appeared to correlate, to a greater or lesser extent with most of the studied variables (Fig. 6). It is 354 

also worth mentioning the high positive correlation between the organic matter content and the energy 355 

of deformation (R=0.53), and, the wide influence of the bulk density (i.e. compaction) over most of the 356 

assessed variables.  357 

 358 

 359 

4. DISCUSSION  360 

  361 

4.1. Soil mechanical strength under fallow and vegetated conditions 362 

 363 

A significant mechanical soil reinforcement response was observed when the soil was vegetated (Figs. 364 

3 and 5; Tables 1 and 2). The same response was noted in previous studies (e.g. Waldron et al., 1983; 365 

Ekanayake and Phillips, 1999; Mickovski et al., 2008; Ghestem et al., 2013). The transfer of energy 366 

from the root to the soil (Ekanayake and Phillips, 1999) as roots fail under shear conditions (i.e. break 367 

or pull-out; Waldron, 1977) may explain the observed soil-root reinforcement effect.  368 

However, the soil-root reinforced shear strength could also be explained by emergent soil structural and 369 

mechanical properties induced by the vegetation. For instance, the presence of roots affected the angle 370 

of internal friction when compared to the fallow soil (i.e. ϕ’vegetated=1.2ϕ’fallow; Table 2; Fig. 5a). This 371 

response contradicts the traditional belief that the presence of roots in the soil does not change ϕ’ 372 

(Waldron and Dakesian, 1981; Gray and Ohashi, 1983; Ghestem et al., 2013). Roots do cause soil 373 

structural changes (Whalley et al., 2005) and, thus, changes in strength. In addition, roots, as a foreign 374 

material to the mineral soil, are likely to act as an additional friction agent to the intrinsic soil inter-375 

particle friction, ultimately conferring more soil shear resistance (i.e. steeper envelopes; Fig. 5a). This 376 

claim is also supported by the fact that ϕ’ was highly correlated with OM (see 3.2; Fig. 6), which 377 

experienced a consistent increase after only three weeks of vegetation growth (Table 2). The effect of 378 
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the OM gain was also seen in the relatively strong observed correlation between OM and the 379 

deformation energy (J; Fig. 6), which tended to be consistently higher for the vegetated repeats (i.e. 380 

roots give ductility to the soil; Table 1). Counter intuitively to our other results, the OM seemed to 381 

present a high negative correlation with the strain at the yield point (εy; Fig. 6). This outcome is 382 

concurrent with previous studies (e.g. Mickovski et al. 2009; Mickovski et al. 2011) and supports the 383 

idea that the rooted soil strength is not fully mobilized until larger shear displacements. However, this 384 

effect should be treated with caution as the location of the yield point was not obvious in most cases; a 385 

known issue (Ghestem et al. 2013).   386 

The observed soil-root mechanical reinforcement, in terms of τyield and J, was higher compared to 387 

published values (e.g. Ekanayake and Phillips, 1999; Ghestem et al., 2013), and there are several 388 

reasons that could be contributing to this difference. Firstly, higher normal loads were applied than in 389 

previous work. This could have led to consolidation effects on the tested specimens (Head and Epps, 390 

2011) and, consequently, to an increase of the specimen´s bulk density upon testing. Low or null 391 

normal loads are commonly used in soil-root reinforcement studies (e.g. Waldron et al., 1983; 392 

Ekanayake and Phillips, 1999; Pollen, 2007; Fan and Su, 2008; Mickovski et al., 2009; Ghestem et al., 393 

2013) to mimic the effects derived from the plant surcharge, as these loads are normally assumed to be 394 

negligible (Norris et al., 2008). However, as the normal applied loads increase together with the 395 

specimen’s bulk density, the soil shear strength also increases (Head and Epps, 2011), as it can be seen 396 

in the failure envelopes (Fig. 5a). Secondly, a high planting density (Loades et al., 2010), more than ten 397 

times higher than the one recommended for agricultural plantations (e.g. Mateo, 2005), and a smaller-398 

scale shear box (see 2.1) were used, which could have prevented the roots from sliding from the soil, 399 

increasing resistance to shear even if the roots were broken (Ghestem et al., 2013). This issue may 400 

explain why the shear strength continued to rise in the tested samples (Fig. 3). This has been found in 401 

other systems (Waldron et al. 1983) and numerically predicted (Mickovski et al. 2011). Alternatively, 402 

the necessary shear displacement for complete failure to occur may not be reached due to root 403 

stretching effects (De Baets et al., 2008) or due to apparatus limitations (i.e. maximum shear 404 

displacement limited to 20 mm; Mickovski et al. 2009). Nonetheless, the presence of many roots that 405 

have not broken and are yet to mobilise their full tensile strength (Docker and Hubble, 2008) seems to 406 

be a more plausible reason for the former issue. As a result, most of the vegetated treatments’ stress-407 

strain curves (Fig. 3) presented smooth profiles without a clear peak (e.g. Waldron et al., 1983; 408 

Ekanayake and Phillips, 1999; Su and Fan, 2010; Ghestem et al., 2013; Bordoloi et al., 2015). 409 

However, further compaction was not applied to the soil specimens before shear testing, a step directly 410 

related to the specimen´s bulk density (Table 2), and could be why shear peaks were absent in the 411 

fallow treatments (Head and Epps, 2011). In this regard, the lower observed bulk density for the 412 

vegetated repeat tested under the residual hydrological regime (Table 2) might explain the lower soil-413 

root reinforcement effect for this trial (Figs. 3f-h; Table 1).    414 

 415 

4.2. Soil-root reinforcement under different hydrological regimes 416 

 417 



 12 

Most of our results are consistent with the idea that there is an optimum soil moisture level for most 418 

effective soil-root reinforcement (Figs. 3d, 3e and 4a). This implies that the vegetation’s mechanical 419 

performance is strongly affected by the soil hydrological conditions. These conditions are expected to 420 

vary seasonally (e.g. higher soil moisture saturation levels in winter). Hence, the vegetation’s 421 

mechanical response is expected to experience seasonal variations too.  422 

The root systems seemed to have been able to mobilize their whole strength only at 17 kPa of matric 423 

suction (i.e. transition regime; Fig. 3-II), for which a clear failure peak was observed in two cases 424 

(Figs. 3d and 3e). Consequently, the vegetated soil presented maximum shear strength at the transition 425 

moisture regime (Fig. 4a) after which it decreased or remained relatively constant. A similar pattern 426 

was observed in the root reinforcement efficiency (REy; Table 1). REy achieved values beyond unity 427 

(i.e. shear strength increased by more than 100 % respect to the fallow soil) at 17 kPa of matric suction.  428 

There are two main reasons that, independently or in combination, could be contributing to the 429 

observed results.  430 

Firstly, the soil-root bonds may change with the soil moisture (Ennos, 1990). As a result, the 431 

mechanisms of root failure (e.g. breakage or pull-out; Waldron, 1977) can vary (Pollen, 2007) along 432 

with the amount of energy conferred to the soil by the root system (Waldron, 1977). The maximum 433 

energy is thought to be provided when the roots break (Waldron, 1977; Stokes et al., 2008). Yet, when 434 

the soil is extremely saturated, roots will be more likely to pull-out (Ennos, 1990) as a consequence of 435 

the soil’s physical consistency loss (i.e. soil behaves as a liquid once the liquid limit is exceeded; Craig, 436 

2004) and derived soil-root bonds loss (Ennos, 1990). However, as the soil dries out, there is an 437 

increase of the soil shear strength (Vanapalli et al., 1996) derived from the pore water pressure 438 

dissipation (Lu and Godt, 2013), along with a soil stiffness increase (Cosentini and Foti, 2014). These 439 

effects were observed under both fallow and vegetated treatments on the upward shift of the failure 440 

envelopes (Fig. 5a) and on the increasing trend of G with the matric suction (Table 1), respectively. 441 

The high soil strength under the residual regime may therefore obscure soil-root reinforcement effects 442 

(Figs. 3g-h, 4a; Table 1) and explain the lower root efficiency (Table 1) under high ua-uw. Nonetheless, 443 

as it has been mentioned above, vegetated soil tended to maintain the soil shear strength constant 444 

beyond the optimum (Fig. 4a). This issue may be produced by a buffering effect of the soil stiffness 445 

when roots are embedded in the soil (i.e. soil becomes more elastic and ductile); also supported by the 446 

trend seen in the fallow soil (Fig. 4b), where a non-linear strength increase with the matric suction was 447 

observed. The latter is consistent with the observations gathered in Vanapalli et al. (1996).  448 

Secondly, root tensile strength may change under distinct root moisture contents, which, in turn, will 449 

vary depending on the surrounding soil´s moisture. The root tissues’ mechanical behaviour will likely 450 

change depending on the tissue’s cells hydration (e.g. Böhm, 1979; Stokes et al., 2008). As we have 451 

observed during root tensile strength tests (Tardio and Mickovski, 2016), roots tend to be stiffer and 452 

present a lower tensile strength when dry. Conversely, when roots are very wet, they tend to slip out 453 

from the tensile testing machine. Thus, optimum root moisture contents for the mobilisation of the 454 

maximum root tensile strength could exist and explain the observed results (Table 1; Figure 3). The 455 

former may also explain the observed bias at 13 kPa of ua-uw for the vegetated replicates tested (Fig. 456 

5a), where the root moisture may have not been at its optimum despite the soil’s transition regime 457 
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conditions. The hypothesis of optimum root moistures is also supported by the G differences between 458 

the two treatments (Table 1). Roots should present a maximum elasticity (i.e. tensile strain) under 459 

optimum root moisture content (e.g. Ekevand and Axelsson, 2012). As a result, the soil-root composite 460 

should be more elastic too and, consequently, the vegetated repeats showed significantly higher G than 461 

the fallow repeats within the transition regime in all cases (Table 1).  462 

The idea of an optimum soil moisture level for most effective soil-root reinforcement is to some extent 463 

also supported when comparing our findings with results from previous studies. For example, root 464 

mechanical reinforcement observations were higher than those reported for saturated moisture 465 

conditions by Waldron et al. (1983) with respect to the saturation and transition moisture regimes but 466 

lower, in terms of REy, for the residual regime (Table 1). However, root efficiency outcomes (REy; 467 

Table 1) were in disagreement with the findings from Fan and Su (2008), who claimed that REy 468 

increased with the soil moisture content, with values between 0.9 and 1.3 under saturated conditions. 469 

REy findings also differed from the observations provided in Pollen (2007), where it is indicated that 470 

the reinforcement is likely to be at a minimum when the soil is saturated. Based on the consistent 471 

reduction in soil strength under the saturated regime (Figs. 3 and 5a), there is some consistency with 472 

Fan and Su (2008) in that the reinforcement effect provided by vegetation roots is more significant 473 

under saturated conditions. Nonetheless, the former studies (Pollen, 2007; Fan and Su, 2008) did not 474 

consider soil hydrological regimes in light of the SWCC, only testing two discrete soil moisture 475 

contents (i.e. ca.10 % and 20 %) without providing further soil physical information or adjusting the 476 

selected moisture contents to real-life hydrological regimes.  477 

The observed bias between the two vegetated repeats tested within the transition regime (i.e. 13 kPa vs. 478 

17 kPa) warrants further research along the same lines presented herein in order to shed light on which 479 

factors (e.g. soil moisture, root moisture, emerging soil-root composite properties, root features, etc.) 480 

led to the optimum soil-root reinforcement and to the observed bias. Additionally, it would be ideal to 481 

consider other soil hydrological processes. For example, SWCCs are subject to soil hysteresis, which 482 

cause soil hydro-mechanical differences between the drying and wetting paths (e.g. Lu and Likos, 483 

2004). The hydrological regimes will therefore change under wetting conditions - when landslides are 484 

more likely to occur - and, accordingly, the soil-root reinforcement performance.  485 

The root tissue composition of the young Alfalfa seedlings (i.e. cellulose to lignin ratio; Zhang et al., 486 

2014), which has been proved to affect the root tensile strength (Genet et al., 2005), was not considered 487 

and neither was the root length or the age of the plants – all of which may lead to soil-root 488 

reinforcement differences (Loades et al., 2010). For instance, it is normally accepted that roots transfer 489 

different energy into the soil depending on the root length (e.g. Ennos, 1990). Additionally, young and 490 

adult plants tend to present root tissue compositional variations (i.e. cellulose to lignin ratio; Genet et 491 

al., 2006), leading to different root reinforcement effects (Zhang et al., 2014).     492 

 493 

  494 

4.3. Suction stress functions: hydrological reinforcement   495 

 496 
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Fallow and vegetated soil showed distinct suction stress characteristic curves (SSCC; Fig. 5c). These 497 

derived from changes in the soil hydro-mechanical parameters required to fit Eq. 1 (Lu et al., 2010) to 498 

the obtained data points (Fig. 5c). Changes in the physical properties of vegetated soil when compared 499 

to fallow soil were observed as expected (Table 2). As a result, differences were found in terms of the 500 

hydro-mechanical parameters (Scanlan, 2009; Carminati et al., 2010). The obtained values for α and n 501 

after fitting Eq. 1 (Fig. 5c) would imply that the hydro-mechanical behaviour of the vegetated soil in 502 

this study shifted towards the expected behaviour of a ‘clay material’ (Lu et al., 2010). This shift can be 503 

seen in the observed higher moisture retention capacity of the vegetated soil within the saturated 504 

regime and in the potential to buffer the suction levels within the residual regime (Table 2; also see 505 

Whalley et al., 2005).  506 

Regarding the SSCC for vegetated soil (Fig. 5c), a suction stress baseline (i.e. -23.49 kPa; Table 2; Fig. 507 

5c) within the saturated regime was detected. This baseline indicates a possible relationship between 508 

the apparent root cohesion (cR; Wu et al., 1979) and the suction stress, which was also seen in the 509 

correlation between σ
s
 and τyield (Fig. 6). Furthermore, it is likely that suction stress regimes exist (Fig. 510 

5c; dark green triangles) reflecting differences between the soil hydrological regimes (Fig. 2). σ
s
 511 

increased with the matric suction within the saturated regime and was relatively constant within the 512 

transition regime before slowly increasing within the residual regime. In this respect and, considering 513 

the role of σ
s
 within the unified effective stress principle (Lu and Likos, 2004), the soil strength would 514 

experience a consistent increase derived from the soil matric suction rise. Consequently, and given the 515 

acknowledged increase of the matric suction induced by plant-water uptake or evapotranspiration (e.g. 516 

Rodriguez-Iturbe and Porporato, 2004), σ
s 

has good features to be used as a proxy to quantify the 517 

hydrological effect of vegetation on the soil shear strength (i.e. plant hydrological reinforcement) and, 518 

hence, the vegetated soil resistance against shallow landslides (e.g. Gonzalez-Ollauri and Mickovski, 519 

2014, 2015).  520 

However, the fallow soil SSCC (Fig. 5c; bold curve) differed from the theoretical prediction (Fig. 5c; 521 

dashed light grey curve; Lu et al., 2010; Song et al., 2012); the hydro-mechanical parameter, n, differed 522 

from that of the SWCC (Figs. 2 and 5c; see 3.4).  For the soil being studied, considering both the 523 

SWCC parameters and theory, the SSCC should have reached a maximum at AEV (i.e. air entry 524 

pressure) preceded by a 1:1 relationship between σ
s
 and ua-uw (Fig. 5c; dashed light grey curve). It did 525 

not here, but the processes that take place in the soil-pore space under unsaturated conditions (Lu and 526 

Likos, 2004) are highly complex and extremely difficult to fully replicate in a laboratory. Thus, 527 

development of simplified methods to evaluate the SSCC in fallow soil should be continued.  528 

Finally, it is worth noting that the closed-form equation of SSCC (Lu and Likos, 2004) was derived for 529 

soil only and not for plant-soil composite material, which is probably the largest source of variation in 530 

the observed data from the theoretical prediction. Only considering the data we observed for the three 531 

hydrological regimes (i.e. 0 kPa, 17 kPa and 78 kPa), a different function was analytically fitted for the 532 

vegetated soil taking into account the curve’s graphical shape (Fig. 5c: full red line). The alternative 533 

function was implemented with the same hydro-mechanical parameters derived from the SWCC: 534 

𝜎𝑠
𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 =  −𝑛/𝛼(1 − exp (𝛼(𝑢𝑎 − 𝑢𝑤)) +  𝑐𝑅 . We recommend the use of this function for 535 

estimating the plant-derived soil hydrological reinforcement as opposed to the function derived from 536 
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the experimental protocol (Fig. 5c; dashed green line) because it considers the hydro-mechanical 537 

parameters derived from the SWCC, it is consistent with the different soil hydrological regimes – it 538 

tends to become constant within the residual regime – and, it predicts a solid plant hydrological 539 

reinforcement compared to the fallow soil, as it is believed to occur in nature (Wilkinson et al., 2002). 540 

Nonetheless, further work is needed to establish reliable experimental protocols able to find 541 

expressions for predicting the soil hydrological reinforcement provided by vegetation, to shed light on 542 

the myriad changes that vegetation produce upon the soil’s hydro-mechanical properties and to enhance 543 

our understanding on the behaviour of plant-soil composites. 544 

 545 

5. CONCLUSIONS 546 

 547 

In light of our observations and findings it can be concluded that: 548 

 549 

 The presence of vegetation in the soil can change the soil composition with relevant hydro-550 

mechanical implications.  551 

 Vegetation is able to mechanically reinforce the soil but the magnitude of this reinforcement 552 

will depend on the soil’s hydrological regimes – most effective reinforcement will be expected 553 

within the transition regime. 554 

 The presence of roots in the soil can induce an increase in the angle of internal friction of up 555 

to 20% when compared to fallow soil.   556 

 Vegetated soil has a suction stress function that is distinctly different from the one of fallow 557 

soil. This function is governed by the soil´s hydrological regime, it can be used as a proxy to 558 

quantify the plant-derived hydrological reinforcement of the soil, and it stresses the intimate 559 

relationship between plant-derived mechanical and hydrological soil reinforcement.  560 

 561 

Our results provide a good basis for future research along the same lines to enhance our understanding 562 

upon the nature of plant-soil composites and shed light on the sustainable use of vegetation against 563 

shallow landslides.  564 
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