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Abstract 51 

  52 

The aim of this paper was to quantify the mitigation potential of pioneer herbs against 53 

shallow landslides and erosion in temperate humid climates and to identify key plant 54 

information to aid species selection for slope stabilisation. The objectives ranged from 55 

the study of the climate, soil and root spread of three native perennial herbs growing 56 

on a landslide-prone slope in Northeast Scotland to the verification of an upgraded 57 

spatially distributed eco-hydrological model in order to test whether root spread 58 

information can be provided cost-effectively in temperate humid climates. The 59 

retrieved information on root spread was then used to evaluate the  slope stabilisation 60 

potential of the pioneer herbs in the topmost soil horizons using a limit equilibrium 61 

method. 62 

The results indicated that pioneer herbs, although presenting climate-influenced 63 

shallow root systems, could noticeably contribute to reducing soil mass loss and 64 

landslides. This was largely determined by the plant biomass and allometry, the latter 65 

being a potential readily measurable proxy for species selection in slope stabilisation 66 

that will need further investigation. Additionally, our observations supported the 67 

model predictions remarkably well when site-specific inputs were employed, showing 68 

that the proposed model is a suitable and cost-effective tool to provide spatial root 69 

spread information for eco-engineering purposes in temperate humid climates. 70 

 71 

Key words: herb, root spread, temperate humid climate, allometry, distributed model, 72 

shallow landslide.  73 

 74 
 75 
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 78 
 79 

1. Introduction 80 

 81 

Landslides and erosion are a global hazard that lead to dramatic loss of human life, 82 

property and soil every year with an occurrence that will likely increase due to the 83 

effects of climate and land use change (van Beek et al., 2008; IPCC, 2014) if action is 84 

not taken.  85 

The use of plants against shallow landslides and erosion has been shown to be an 86 

effective eco-engineering measure (Stokes et al., 2014) mainly provided by the soil-87 

root mechanical reinforcement (Norris et al., 2008). A root-permeated soil makes up a 88 

composite material that has enhanced strength (Waldron, 1977), providing a similar 89 

effect to the soil like that of steel rods to reinforced concrete (Mickovski et al., 2009). 90 

However, to quantify the extent of soil-root reinforcement, information on the root 91 

spread in the soil is needed to evaluate the slope stabilisation potential of the plant in 92 

the topmost soil horizons.  93 

 Despite the relatively recent efforts to quantify root spread at a global scale (e.g. 94 

Schenk and Jackson, 2002; Schenk and Jackson, 2005), it still remains unknown for 95 

the vast majority of the wild plant species. Indeed, information related to pioneer 96 

herbs is severely scarce, as far more attention has been traditionally paid to woody 97 

plant species (Stokes et al., 2008) and crops (Böhm, 1979). Pioneer herbs may present 98 

a great eco-engineering potential as they are fast-growing, easily spreadable and set 99 

the basis for further ecological succession (Odum and Barrett, 1971). However, herb’s 100 

root systems are expected to be limited to the topmost soil horizons, being more likely 101 

effective against rill or gully erosion (e.g. van Beek et al., 2008).  Hence, the use of 102 



herbs in eco-engineering slope stabilisation actions needs to be combined with other 103 

remediation techniques (e.g. Tardio and Mickovski, 2016).     104 

The root distribution in the soil may be complex and, obtaining related information is 105 

expensive and time-consuming. Thus, the development of numerical root distribution 106 

models has been the scope of research in the past few decades (e.g. Wu et al., 2005) 107 

and based on this research, for most practical eco-engineering applications, a root 108 

profile can be portrayed as a simple asymptotic mathematical function (Jackson et al., 109 

1996). Additionally, it has been observed that root spread is chiefly influenced by 110 

water availability in the soil (i.e. ‘hydrotropism’; Darwin, 1880; Tsutsumi, 2003). 111 

This concept permits to link the root development to climate and soil properties 112 

(Schenk and Jackson, 2002) and, therefore, to the soil’s water balance. In this sense, 113 

Laio et al. (2006) developed an analytical eco-hydrological model able to predict 114 

realistically the rooting depth at the plant community level for water-limited 115 

ecosystems (i.e. arid or dry environments) from readily available soil and climatic 116 

predictors. These predictors can be easily parameterised from the soil 117 

physicochemical properties (i.e. porosity, texture and organic matter content) and 118 

from temperature and rainfall information collected by many weather stations. 119 

However, the root spread has rarely been assessed using in situ soil and climate-120 

derived information as data from distant meteorological stations and sampling 121 

locations are normally interpolated for a given study site (e.g. Preti et al., 2010; Tron 122 

et al., 2014). Laio´s et al. model was further extended by Preti et al. (2010) to provide 123 

plant species-specific root profile information by the consideration of a universal 124 

property to all living organisms, the allometry (West et al., 1997). Plants allocate their 125 

biomass above and below the ground, and the proportion in which this is distributed 126 

can be assessed by the plant’s allometric relationship (Cheng and Niklas, 2007) 127 



depicted by a simple power-law relationship (West et al., 1997). This relationship 128 

permits to cost-effectively infer the root biomass from measurements of the 129 

aboveground biomass and also potentially determine plant parameters related to soil 130 

reinforcement purposes (e.g. Hwang et al., 2015). To the best of our knowledge, the 131 

identification of plant indicators able to enhance the effectiveness of plant selection 132 

against shallow landslides has been rarely explored (e.g. Cornelini et al., 2008). 133 

Additionally, the existing models (Laio et al., 2006; Preti et al., 2010) are, essentially, 134 

one-dimensional and cannot be readily applied to temperate humid climates (Tron et 135 

al., 2014), which cover a big surface of the Earth (Köppen, 1884).    136 

Climate, soil, and plant cover are spatially highly heterogeneous, which stresses the 137 

need of adopting spatial approaches to predict root system features under different 138 

environmental and landscape scenarios. However, spatially distributed root spread 139 

models are lacking in the literature (e.g. O’Brien et al., 2007; Coelho et al., 2003), 140 

although these types of models are very popular in hydrology and catchment science 141 

(Neitsch et al., 2011; Doppler et al., 2014). The development of distributed root 142 

spread models may be very helpful to assess the spatial effect of vegetation against 143 

shallow landslides and erosion or to enhance the predictive capacity of other spatial 144 

models aiming to quantify plant-derived processes (e.g. water fluxes, nutrient cycles 145 

or sediment dynamics at the catchment scale; SWAT; Neitsch et al., 2011). However, 146 

the performance of a given distributed model will rely on the quality of the spatial 147 

information used as an input. In this sense, the implementation of machine learning 148 

techniques, such as the random forest algorithm (RF; Breiman, 2001), for predicting 149 

spatially heterogeneous soil variables that drive root spread in the soil (e.g. soil water 150 

availability) may have great potential for providing spatial soil information cost-151 

effectively (Malone, 2013). RF was conceived to produce accurate predictions that do 152 



not overfit the data (Breiman, 2001), it is more powerful than classical spatial 153 

interpolation methods (e.g. regression tree, universal kriging, cubist; Liess et al., 154 

2012) and more interpretable than other machine learning techniques, such as neural 155 

networks (Prasad et al., 2006). The use of these techniques in environmental studies, 156 

although growing, is still poor.  157 

The aim of this paper is to quantify the potential of pioneer herbs against shallow 158 

landslides and erosion in temperate humid climates and identify key plant information 159 

to aid species selection for slope stabilisation. To do so, we follow a step by step 160 

journey from the study of the climate, soil and the root spread of three native 161 

perennial herbs growing on a landslide-prone slope in Northeast Scotland, to the 162 

verification of our revised spatially distributed eco-hydrological model; testing 163 

whether root spread information can be provided cost-effectively in temperate humid 164 

climates. The retrieved information on root spread is then used to evaluate the pioneer 165 

herbs’ slope’s topmost horizons stabilisation potential using a limit equilibrium 166 

method, which outcome will contribute to shed light on key plant-related data for 167 

effective plant selection against shallow landslides and erosion. 168 

 169 

2. Materials & Methods 170 

 171 

2.1. Study site 172 

 173 

The study site lies within Catterline Bay, Northeastern Scotland, UK (WGS84 Long: -174 

2.21 Lat: 56.90; Fig. 1), a region with mean annual temperature of 8.02 ºC and mean 175 

annual rainfall of 1232 mm (UK Met Office, 2015); constituting a humid temperate 176 

climate site (Cfc: subpolar oceanic climate; Köppen, 1884). The precipitation is 177 



characterized by frequent, low-intensity rainfall events, while heavy storms seldom 178 

occur. The topography of the study site is dominated by sloped (25-50º) terrain and 179 

cliffs ending up into the sea, combined with a flatter inland area that is crossed by a 180 

small stream that leads to the formation of inclined river banks (Fig. 1). Shallow (ca. 181 

600 mm) and well-drained soils can be found within the study area resting on top of 182 

sedimentary bedrock (i.e. conglomerate; BGS, 1999). The vegetation cover is 183 

dominated by herbaceous weeds and grasses, riparian trees and agricultural crops of 184 

wheat and barley. The sea has a limited influence on the vegetation as south-westerly 185 

winds prevail. Different soil mass wasting episodes (landslides and erosion) have 186 

been reported on the site in the past (e.g. Kincardineshire Observer 11/4/2013), 187 

mainly associated with prolonged rainfall periods. The failure zones are easily 188 

identifiable, presenting exposed bare ground or areas of sparse vegetation 189 

 190 

2.2 Parameterisation 191 

Figure 1. Study site location, topography, and location of the meteorological stations considered in this study. 1: 
Catterline; 2: Durris; 3: Mongour; 4: Netherley; 5: Inverbervie; 6: Fettercairn; 7: Stonehaven. Sloped terrain, cliffs 
and inclined riverbanks shown in darker shade/colour. 



 192 

The parameterisation process was carried according to the diagram shown in Fig. 2 in 193 

order to identify and quantify the studied systems’ elements governing plant root 194 

spread and feed a model aiming at providing root spread information in temperate 195 

humid climates (i.e. root profile distribution model, RPDM; see 2.3). 196 

 197 

 198 

 199 

 200 

2.2.1 Climate parameters 201 

 202 

Two types of climate data sets were employed: 1) short-term meteorological time 203 

series from a meteorological station located at the study site (2012-2014; vor de Porte, 204 

2015; Fig. 1; Point 1) 2) long-term meteorological time series belonging to 6 different 205 

weather stations located within the region of the study site (1996-2014; UK Met 206 

Office, 2015; Fig. 1; Points 2 to 7).  207 

Figure 2. Arrow diagram showing the relationship between the considered compartments  (black boxes) and 
parameters/variables (grey boxes) describing the root spread. Gray arrows indicate interactions between the 
compartments forming the ecosystem under study.  

 



The growing season duration was determined according to the growing degree-days 208 

(GDD) approach (e.g. McMaster & Wilhelm, 1997). We assumed that the growing 209 

season started once the cumulative GDD reached 200ºC, and that root growth was 210 

inhibited when the daily air temperature was below 5ºC (Alvarez-Uria and Körner, 211 

2007). The duration of the growing season was estimated for each station and year 212 

and then it was averaged for the considered time series. 213 

The probability distribution of the rainfall intensity for each growing season was 214 

assessed by estimating and plotting its kernel density (Parzen, 1962) in R 3.1.2 (R 215 

Development Core Team, 2014). Then, the rainfall parameters λo (i.e. frequency of 216 

rainfall events) and α (i.e. mean rain intensity) were estimated for each growing 217 

season as indicated in Preti et al. (2010). Both parameters, λo and α, were averaged 218 

over the considered time series and compared against the values obtained at the study 219 

site’s station prior being used as input into RPDM (see 2.3). The mean 220 

evapotranspiration rate (Tp (mm d-1)) over the growing season was estimated with 221 

Priestly & Taylor (1972) equation and the extension proposed by Savabi et al. (1989) 222 

considering a broad-leaf vegetation cover (LAI: 3.48, Deguchi et al., 2006; 223 

aboveground biomass (Ma): 6140 g m-2 , Nunes et al., 2013).  224 

 225 

2.2.2 Soil parameters 226 

 227 

Undisturbed soil core samples from the uppermost 150 mm were collected at 30 228 

random locations within the study site using an aluminum core sampler of 95 mm 229 

(inner diameter) and 150 mm (height). The soil samples were oven-dried at 110ºC 230 

over 24 hours to calculate the dry bulk density and porosity; assuming a soil particle 231 

density of 2.65 g cm-3 (Head, 1980). The soil particle size distribution was determined 232 



by the dry sieving method and by the hydrometer method for the coarse (i.e. gravel 233 

and sand) and the fines fraction (i.e. silt and clay), respectively (BS 1377 Part 234 

2:1990). Soil organic matter content was estimated through the loss on ignition 235 

method (Schulte and Hopkins, 1996). Soil saturated hydraulic conductivity was 236 

measured at 5 different locations with a constant head Guelph permeameter (Reynolds 237 

and Elrick, 1990). The former soil parameters were used to determine the soil’s field 238 

capacity (θfc) and wilting point (θwp) by means of pedotransfer functions (Toth et al., 239 

2015). The mean θfc and θwp values between the sampled points was employed as 240 

input into RPDM (see 2.3).   241 

 242 

2.2.3 Plant parameters 243 

 244 

Three different dominant species of perennial pioneer herbs were selected (Table 1) 245 

for parameterisation. All of them are native species that are well distributed over the 246 

entire UK, generally colonizing disturbed grounds (Perring and Walters, 1982). Plant 247 

sampling was carried at the height of the 2014’s growing season (i.e. late July-early 248 

August) in which ten to eleven individuals of each species were sampled at random 249 

locations within the study site. Each plant individual was carefully excavated by hand 250 

without separating the above and belowground parts. In addition, to quantify the plant 251 

cover in terms of the aboveground biomass and the abundance of the selected plant 252 

species, twenty-five 1 m2 quadrants were randomly sampled within the study site 253 

(USDA-NRCS, 1997).  254 

Table 1. Studied herbaceous plant species. 255 

Species Family Common name 
Erigeron acris L. Asteraceae Blue fleabane  
Rumex obtusifolius L.  Polygonaceae Broad-leaved dock 
Silene dioica Clariv.  Caryophyllaceae Red campion  

 256 



Each plant individual was clipped 2 millimetres above the collar with precision 257 

scissors to separate the above from the belowground part. The biomass of the above 258 

and belowground plant parts was determined after oven drying at 70ºC for 48 hours. 259 

The relationship between above and belowground parts (i.e. plant allometry) was 260 

evaluated through the implementation of exponential regression models in R 3.1.2, 261 

assuming a power-law relationship between both plant vegetative parts (WBE model; 262 

West et al., 1997; Cheng and Niklas, 2007) of the form Ma= βMr
α’, where Ma and Mr 263 

are the above and belowground biomass (g), respectively, β is the allometric 264 

normalization constant.   265 

 266 

2.2.4. Root spread parameters 267 

 268 

To estimate the root cross-sectional area with soil depth (i.e. rooted soil), the root 269 

diameters (di) for each depth interval were summed up and the area was then 270 

calculated as Ai=π(Σdi/2)2, assuming that the soil-rooted area approaches a 271 

circumference at every considered depth and that fine roots are randomly distributed 272 

within. The average of all observations at every depth for each plant species were 273 

considered, to which an exponential regression model was fitted in R 3.1.2. The 274 

proportion of root-reinforced soil (i.e. root area ratio; RAR) was then calculated as 275 

RAR(z)=Ai(z)/Asoil. The mean rooting depth (b) was estimated as the average of the 276 

total rooting depth of all individuals per species divided by 3 (Laio, 2006). The root 277 

cross-sectional area at the ground level (Aro) was assessed like Ai but considering the 278 

root diameters at the root collar.   279 

 280 

2.3 Root profile distribution model (RPDM) for temperate humid climates.  281 



 282 

2.3.1. Model description 283 

 284 

The eco-hydrological model RPDM for temperate humid climates was based on 285 

Laio´s et al. (2006) model concept for the determination of the mean rooting depth (b) 286 

at the plant community level for water-limited ecosystems. The former model (Laio et 287 

al., 2006) estimates b (mm) as a function of the long-term water balance in the soil by 288 

considering the ratio between the incoming water (i.e. rainfall) to the soil’s available 289 

water content (AWC) to plants, where AWC is in turn constrained by the atmospheric 290 

water demand during the growing season - i.e. b=α/n(θfc-θwp)(1- α λ o/Tp). 291 

Contrariwise, we assumed herein that water income is no longer a limiting resource in 292 

the soil profile for root system spread as, in temperate humid climates, precipitation 293 

tends to be plentiful while evapotranspiration, or atmospheric water demand, is kept 294 

at relatively low level (Allen et al., 1998). Therefore, we simplified Laio’s analytical 295 

model by considering that all the soil’s incoming water would potentially be available 296 

to plants. Hence, the mean rooting depth was estimated as: 297 

𝑏𝑏 =
𝛼𝛼

𝑛𝑛(𝜃𝜃𝜃𝜃𝜃𝜃 − 𝜃𝜃𝜃𝜃𝜃𝜃) 

where α is the mean rainfall intensity per event (mm/event) over the growing season 298 

(see 2.2.1), and n(θfc-θwp) is the soil’s available water content (AWC) to plants, being 299 

n is the soil porosity (unitless), θfc is the soil’s volumetric moisture content at field 300 

capacity and θwp the soil’s volumetric moisture content at wilting point (see 2.2.2). 301 

Therefore, the mean rooting depth (b) would be just constrained by the soil 302 

hydrological properties and fostered by the mean rainfall intensity during the growing 303 

season (α). With this, it is also assumed that, according to hydrotropism principles 304 

(Eq. 1) 



(e.g. Tsutsumi et al., 2003), the extent to which water can infiltrate in the soil profile 305 

is key to determining the extent of root profiles (Laio et al., 2006) and that 306 

evapotranspiration does not limit the availability of water to plants in temperate 307 

humid climates. Having estimated b, the soil depth at which the 95 % (i.e. z95) of the 308 

roots can be found can be calculated as z95=3b (Laio et al., 2006).    309 

The root distribution profile, or root spread, was considered to decrease exponentially 310 

with the soil depth (z); assuming that the probability distribution of the rainfall 311 

intensity was also exponential (Laio et al., 2006; see 2.2.1) and portrayed by 312 

Ar(z)=Aroexp-z/b (Preti et al., 2010). Where Ar(z) is the root cross-sectional area with 313 

soil depth (mm2), Aro is the root cross-sectional area at the ground level (mm2), z is 314 

the soil depth (mm) and b the mean rooting depth (mm). Assuming a conical shape 315 

root system, Aro was estimated from the plant aboveground biomass (Ma), allometric 316 

parameters (β and α’; see 2.2.3), the mean rooting depth (b) and root mass density (ρr) 317 

(Aro= βMa
1/α’/ bρr; Preti et al., 2010). Eventually, the root area ratio (RAR(z)) was 318 

estimated (see 2.2.3) .    319 

 320 

2.3.2. Model quality 321 

 322 

The goodness of fit of RPDM was quantified through the estimation of the coefficient 323 

of determination (R2) by subtracting from 1 the quotient between the residual (i.e. 324 

difference between observed and predicted values) sum of squares and explained sum 325 

of squares (i.e. R2=1-SSres/SSobs; e.g. Bivand et al., 2008). In addition, statistically 326 

significant differences between observed and regressed values for the parameters Aro 327 

and b were assessed with the chi-square (χ2) test at the 95% and 99% confidence 328 

intervals in R 3.1.2.  329 



 330 

2.3.3. Model sensitivity  331 

 332 

The sensitivity of RPDM was analyzed with the One-factor-At-a-Time approach 333 

(OAT; Daniel, 1973), considering the mean root cross-sectional area as the model 334 

output. The 9 independent model parameters (Table 2) were considered and their base 335 

value was varied ±20% to account for natural variability. One model run was carried 336 

for each parameter value change (i.e. 18 model runs in total). The parameter change 337 

that generated the greatest output variation with respect to the original model run was 338 

kept for the estimation of the sensitivity index (SI) and the percentage of variation 339 

(PV) (Felix & Xanthoulis, 2005). Finally, the effect of the most sensitive parameters 340 

on the root distribution profiles was evaluated and discussed.  341 

Table 2. RPDM’s independent parameters considered within the sensitivity analysis.  342 

Symbol Parameter 
Ma Plant’s aboveground biomass (g) 
α’ Allometric power-law parameter 
β Allometric parameter 
ρr Root mass density (g cm-3) 
OM Soil’s organic matter content (%) 
Silt Soil’s silt content (%) 
Clay Soil’s clay content (%) 
n Soil porosity (unitless) 
α Mean rain intensity during growing 

season (mm H2O/event) 
 343 
 344 

 2.3.4. Model expansion: spatially distributed RPDM 345 

 346 

RPDM expansion was carried using the ‘raster stack’ concept (a collection of raster 347 

layers with the same spatial extent and resolution) of the R’s package ‘raster’ 348 

(Hijmans, 2014). Thus, we modeled a given soil column, of a pixel size area (i.e. 349 

raster resolution), as the pool of superimposed raster pixels for a given XY coordinate 350 



within a given raster stack (Fig. 3). The range of depths for a given soil profile was 351 

then portrayed by each layer in the stack; assigning the same z-value (depth) to every 352 

pixel belonging to the same stack layer. This approach makes also possible to assign 353 

different attributes to each layer in order to mimic the features of different soil 354 

horizons. However, isotropic soil profiles were considered herein for the sake of 355 

simplicity. 356 

 357 

 358 

 359 

The spatially distributed RPDM was tested on our study site (i.e. Catterline bay; Fig. 360 

1), where the root spread and, its corresponding effect on slope stability (see 2.4), 361 

were retrieved from 4 randomly selected pixels. Soil spatial inputs to RPDM were 362 

obtained by spatially interpolating the measured soil parameters (see 2.2.2). The 363 

spatial interpolations were carried with the machine learning algorithm ‘Random 364 

Forest’ (RF) (Breiman, 2001) using terrain attributes (i.e. slope, aspect, curvature and 365 

shade) and plant cover as environmental spatial covariates (Table 3); following the 366 

principles of the ‘scorpan’ approach (Jenny, 1941).  The terrain attributes were 367 

derived from a 2m digital surface model (DSM) (GetMapping, 2014) using the 3D 368 

Spatial Analyst package of ESRI ArcGIS 10.1. RF was implemented using the R 369 

package randomForest (Liaw and Weiner, 2002) in R 3.1.2. RF’s outcome was 370 

Figure 3. Illustration of how RPDM-3D models a given soil column. Each pixel portrays a different soil column of 
area the pixel size. Each soil column may have a custom number of layers, each portraying a different soil depth 
(zn) or additional customizable soil attributes that vary with soil depth. The pool of soil layers is combined in a 
raster stack formed by the superposition of raster layers. 

 



validated using a random-hold back, or bootstrapping method (Efron, 1979), through 371 

the estimation of R2 as indicated in 2.3.2.   372 

Table 3. Soil spatial prediction formulas and environmental covariates implemented with the RF algorithm for 373 
each of the considered soil spatial variables.    374 

Spatial variable Formula and environmental covariates 
Soil sand content (%) Sand=Slope+Aspect+Curvature+Plant cover 
Soil fines content (%) Fines=Slope+Aspect+Curvature+Plant cover 
Soil silt content (%) Silt=Slope+Aspect+Curvature+Plant cover 
Soil clay content (%) Clay=Fines-Silt 
Soil organic matter (%) OM=Slope+Aspect+Curvature+Plant cover+Sand 
Dry bulk density (g/m3) Bulk= Slope+Aspect+Curvature+Plant cover+Sand+Fines+OM 
Plant biomass (g/m2) Biomass=Slope+Aspect+Curvature+Shade+Sand+Fines+OM+Plant cover 
 375 
 376 

2.4. Root mechanical effect against shallow landslides  377 

 378 

To assess the soil-root mechanical reinforcement effect against shallow landslides, the 379 

retrieved root spread information was employed to estimate the apparent root 380 

cohesion (cR(z)) with the widely used simple perpendicular model (SPM; Waldron, 381 

1977; Wu et al., 1979), which requires a measurement or estimation of the root area 382 

ratio (RAR(z)) and the mean root tensile strength (Tr) as input. cR(z) was directly 383 

added to the resisting forces (Wu et al., 1979; Ekanayake and Phillips, 2002; Norris et 384 

al., 2008) for the estimation of a factor of safety (FoS(z)= 385 

cR(z)+resisting(z)/driving(z)) using an infinite slope limit equilibrium method (LEM; 386 

Lu and Godt, 2008).The former LEM method (Lu and Godt, 2008) does not require 387 

assuming the location of a particular critical plane of failure. Instead, the latter is 388 

detected in light of the soil’s hydro-mechanical properties and conditions. However, a 389 

lower boundary for the system under study was arbitrarily set at 500 mm below the 390 

ground level (b.g.l), far below the expected reach of the herbaceous root systems in 391 

order to avoid edge effects.    392 



The values of Tr were as per the reported values in literature (i.e. Tr
herbs=3.73 MPa, 393 

Comino et al., 2010). RAR(z) for each studied herb species was derived from the total 394 

aboveground biomass per unit area (Ma
T) using the plant cover and abundance (see 395 

2.2.3) from the two quadrants where the selected species were the most abundant. 396 

The studied species´ soil-root reinforcement was compared against the effect provided 397 

by an oak tree (Quercus robur L.; Tr
oak= 8.00 MPa, Stokes et al., 2008; Ma=6300 g m-398 

2, Nunes et al., 2013; α’=0.8 β=3.42, Cheng and Niklas, 2007) and bare soil. To stress 399 

the soil-root reinforcement effect, cohesionless and hydrostatic soil conditions were 400 

assumed.  401 

Statistically significant differences between the treatments were evaluated with a 402 

Kruskal-Wallis test among the winsorized means (Wilcox and Keselman, 2003) of 403 

FoS trimmed at 20% and at the 95 and 99% confidence intervals.   404 

 405 

3. Results 406 

 407 

3.1. Parameterisation 408 

 409 

3.1.1 Climate parameters 410 

 411 

Climate parameterisation results (Table 4) show that the mean annual rainfall (R) for 412 

the study site was the lowest of all considered stations (i.e. 565.13±46.89 mm) while 413 

the annual evapotranspiration (ETP) was the highest (489.38±4.29 mm). All stations 414 

presented higher R respect to ETP. The mean rainfall intensity per event (α) ranged 415 

between 3.20 and 9.14 mm, belonging the lowest found to the study site. The growing 416 

season duration would last from mid-late May to mid October for all considered 417 



stations. The rainfall intensity density functions (Figure 4a) were exponential for the 418 

study site.   419 

Table 4. Calculated climatic features and mean growing season duration (GSD) for each meteorological station. α: 420 
mean rainfall intensity per event±standard error; λo: frequency of rainfall event±standard error; R: mean annual 421 
rainfall±standard error; ETP : mean annual evapotranspiration±standard error.  422 

Station Distance 
(km) Period α (mm per 

event) λo R (mm) ETP (mm) GSD 
(day/month) 

Catterline  2012-2014 3.20± 
0.38 

0.64± 
0.02 

565.13± 
46.89 

489.38±1 
4.29 23/5 – 11/11 

Durris 19.6 1996-2014 5.33± 
0.32 

0.54± 
0.02 

1020.15± 
40.35 

461.69± 
10.77 11/5 – 14/10 

Mongour 15.8 1996-2014 9.86± 
1.83 

0.72± 
0.05 

1011.52± 
113.01 

468.08± 
8.80 29/5– 7/10 

Netherley 14.9 1996-2013 5.07± 
0.30 

0.64± 
0.02 

1022.22± 
88.39 

461.54± 
10.26 13/5 – 16/10 

Inverbervie 5.8 1997-2007 9.14± 
0.72 

0.66± 
0.02 

1905.74± 
153.41 - - 

Fettercairn 19.9 1996-2014 4.66± 
0.27 

0.62± 
0.01 

971.31± 
48.35 - - 

Stonehaven 5.7 1996-2013 3.76± 
0.29 

0.57± 
0.02 

747.00± 
52.15 

438.19± 
24.41 17/5-23/10 

 423 

 424 

 425 

 426 

 427 

3.1.2 Soil parameters 428 

 429 

Figure 4. a) Rainfall intensity probability distribution functions for the study site (2012-2014) and a three other 
meteorological stations for the year 2014 b) Monthly rainfall distribution throughout the year averaged per 
meteorological station between all the studied time series, where the bottom and top of the boxes represent the 
first and third quartiles, respectively, the band inside the box represents the median, and the points represent 
outliers from all the studied time series.       

 



The soil parameterisation results (Table 5) indicated that relatively porous, silty sands 430 

(Craig, 2004), with high organic matter content (Urbano, 1992) and good drainage 431 

conditions (Head and Epps, 2011) can be found within our study site.. 432 

Table 5. Measured mean value for each of the considered soil variables averaged between the sampling points and 433 
standard errors. OM: organic matter content; ρb: soil bulk density; n: soil porosity; Ks: saturated hydraulic 434 
conductivity; θfc: volumetric moisture content at field capacity; θwp: volumetric moisture content at wilting point.  435 

Sand (%) Silt (%) Clay (%) OM (%) ρb (g/cm3) n  Ks (m/s) θfc θwp 

74.97 
±2.47 

2.87 
±0.19 

1.60 
±0.12 

5.57 
±0.65 

0.86 
±0.06 

0.68 
±0.02 

5.82e-5 
±1.43e-5 

0.23 
±0.003 

0.09 
±0.001 

 436 
 437 

3.1.3 Plant parameters 438 

 439 

Results from the plant parameterisation (Table 6) show that the aboveground dry 440 

biomasas (Ma), at the individual level, and for the three studied herb species, ranged 441 

between 14.20±1.45 g (E. acris) and 27.65±8.66 g (R. obtusifolius). The belowground 442 

dry biomass (Mr), however, ranged between 1.65±0.71 g (S. dioica) and 13.36±4.05 g 443 

(R. obtusifolius). The plant abundance in the study site (A; Table 6) varied between 444 

21.50 % (S. dioica) and 10.87 % (E. acris). 445 

The allometric parameters (α’ and β; Table 6) were different for all the studied herbs 446 

and only Erigeron acris presented an exponential allometric relationship between Ma 447 

and Mr (α’=0.43; β=9.06; R2=0.65; Figs. 6d-f) while the other two species shown a 448 

linear relationship (Figs. 6d-f) with a higher goodness of fit (i.e. R2 ≥0.95; Table 6).  449 

 450 

3.1.4 Root spread parameters 451 

 452 

The measured mean rooting depth (Table 6) spanned from 21.21±3.52 mm (S. dioica) 453 

to 45.45±2.82 mm (R. obtusifolius). The species that presented the largest root cross-454 

sectional area at the ground level (Aro) was Rumex obtusifolius (747.08±301.58 mm2).  455 



Table 6. Quantified (Q) and modelled (M) allometric and root spread parameters and variables. Ma: aboveground plant biomass; Mr: belowground plant biomass; α’: allometric power exponent; β: allometric normalisation co    456 
cross-sectional area at the ground level; b: mean rooting depth; RAR: root area ratio; R2: coefficient of determination; N: sample size; A: plant species abundance; Ma

T: total plant aboveground biomass per m2. RPDM models     457 
mean plant biomass between all studied individuals, and study site’s climate input and averaged climate input from the other 6 stations, respectively. RPDM models C and D employ total plant biomass, and study site’s c    458 
averaged climate input from the other 6 stations, respectively.  Q: mean ± standard error 459 

Species Type Model Ma (g) Mr (g) α´ β Aro (mm2) b (mm) RAR (%)a R2 N A(%) Ma
T(g m-2)b 

E. acris Q  14.20±1.45 3.14±0.67 - - 178.33±55.58 40.74±5.82 3.68x10-3±5.52x10-5  10 10.87±0.79 325 
 M Allometric - - 0.43 9.06 - - - 0.65 - - - 
 M Regression - - - - 125.23 45.91 - 0.96 - - - 
 M RPDM A - - - - 78.55 45.48 - 0.74 - - - 
 M RPDM B   - - 41.03 87.08 - 0.43 - - - 

R.obtusifolius Q  27.65±8.66 13.36±4.05   747.08±301.58 45.45±2.82 1.88x10-2±2.30x10-4  11 20.41±1.58 1400 
 M Allometric - - 0.99 2.13 - - - 0.95 - - - 
 M Regression - - - - 566.15 56.54 - 0.93 - - - 
 M RPDM A - - - - 366.10 45.48 - 0.61 - - - 
 M RPDM B - - - - 191.24 87.07 - 0.32 - - - 

S. dioica Q  16.74±7.61 1.65±0.71 - - 541.13±136.53 21.21±3.52 1.79x10-2±4.15x10-4  11 21.50±2.12 325 
 M Allometric - - 1.021 10.07 - - - 0.98 - - - 
 M Regression - - - - 443.81 35.52 - 0.99 - - - 
 M RPDM A - - - - 45.20 45.48 - 0.19 - - - 
 M RPDM B - - - - 23.61 87.08 - 0.19 - - - 
 M RPDM C - - - - 473.30 45.48 - 0.83 - - - 
 M RPDM D - - - - 247.23 87.08 - 0.66 - - - 

aRAR: mean percentage ± standard error of all the studied plant individuals between the depths 0-250 mm for E.acris, 0-200 mm for R. obtusifolius and 0-170 mm for S.dioica.  460 
bMa

T: mean of the total aboveground biomass found at the two quadrants in which the considered plant species was the most abundant.  461 
 462 



 463 
The mean RAR between the considered depths (Table 6) ranged between 3.68x10-464 

3±5.52x10-5 % and 1.88x10-2±2.3x10-4 % for E. acris and R. obtusifolius, respectively.  465 

 466 

3.2 Root systems spread and RPDM  467 

 468 

 469 

The root systems (Fig. 5) for the three studied species (Table 1) presented clear 470 

morphological differences. Regarding the root spread (Figs. 6a-c), the three species 471 

shown a decreasing exponential profile distribution with soil depth to which an 472 

exponential regression model was fitted with a goodness of fit (R2) above 0.9 in all 473 

cases (Table 6).  All root systems investigated were distributed within the uppermost 474 

300 mm of the soil profile, with the deepest root system belonging to Rumex 475 

obtusifolius (Fig. 6b) 476 

RPDM predictions for the root spread parameters, b and Aro, and their respective 477 

predictive capacities, are gathered in Table 6. RPDM predicted values for both 478 

parameters that did not significantly differ (χ2=1.66, df=2; χ2=1.34, df=2) from the 479 

observed and regressed counterparts (Table 6) when the study site´s meteorological 480 

inputs were employed. 481 

  482 

 483 

Figure 5. Selected root systems of a) Erigeron acris b) Rumex obtusifolius c) Silene dioica 

 



 484 

 485 

 486 

Figure 6. a-c) Measured and predicted root spread for d) E. acris e) R. obtusifolius f) S. dioica, where a: observed 
values; b: regressed values; c: predicted values from RPDM using study site’s climate input; d: predicted values 
from RPDM using averaged climate inputs from the other 6 weather stations; e and f: predicted values from 
RPDM using the total  biomass of all studied individuals of S. dioica and, study site’s climate input and rest of the 
stations input, respectively d-f) Measured allometric relationships between aboveground and belowground 
vegetative parts for a) E. acris b) R. obtusifolius c) S. dioica, where A: observed values; B: fitted values.   

 



3.3 Sensitivity analysis of RPDM 487 

 488 

Sensitivity analysis outcomes for RPDM are presented in Figs. 7a-d, being the 489 

allometric parameter β (PI=68 %; SI=-2.28), the plant’s aboveground biomass (Ma ; 490 

PV=52.8 %; SI=2.29) and the mean rainfall intensity during the growing season (α; 491 

PV=30.22 %; SI=-1.18) the three most sensitive parameters upon predicting root 492 

spread.   493 

 494 

 495 

 496 

Figure 7. Sensitivity analysis outcome for RPDM a) Percentage of variation (PV) b) Sensitivity index (SI) c) 
RPDM output for the base model run and after applying value changes to the most sensitive parameters respect to 
the base model run: Ma: aboveground biomass (g) (base*3): α’: power-law allometric parameter (base*3); β: 
allometric constant (base*3); ρ: root mass density (g cm-3) (base*0.5); α: rainfall intensity (mm H2O/event) 
(base*5) d) Effects of soil´s model parameters on the root density distribution function (r(z)=b-1e-z/b): OM: organic 
matter (%) (base*0.1); Silt : soil’s silt content (%) (base*10); Clay: soil’s clay content (%) (base*10); n: soil 
porosity (base*0.25). 

 



3.4. Spatially distributed RPDM 497 

 498 

3.4.1 Soil spatial interpolation 499 

 500 

Spatial interpolation outcomes for the soil properties and plant biomass are shown in 501 

Table 7. The predictive capacity of the implemented RF algorithms (Table 3) for the 502 

soil texture (%Sand:R2=0.94; %Fines:R2=0.93) and soil organic matter (R2=0.88) was 503 

high while it was relatively low for the plant biomass cover (R2=0.31).   504 

Table 7. Outcome from random forest (RF) spatial interpolations for each of the considered soil spatial variables. 505 
R2: coefficient of determination; RMSE: root-mean-square-error.  506 

Spatial variable Variance 
explained (%) R2 RMSE 

Soil sand content (%) 62.86 0.94 11.82 
Soil fines content (%) 66.8 0.93 54.32 
Soil silt content (%) 34.1 0.66 57.02 
Soil organic matter (%) 42.78 0.88 1.11 
Dry bulk density (g/m3) 53.16 0.81 0.32 
Plant biomass (g/m2) 33.59 0.31 841.51 

 507 
 508 

3.4.2 Spatial prediction of root spread 509 

 510 

The outcome from the spatial prediction of the root spread is shown in Fig. 8 in terms 511 

of the rooting depth (i.e. z95 =3b; soil depth at which 95 % of the roots can be found) 512 

and in Fig. 9a in terms of the root profile distribution for 4 randomly chosen points 513 

(i.e. Points A, B, C and D; Fig. 8). Results indicated a maximum herbs rooting depth 514 

of ca. 200 mm on flat zones while steeper terrain presented shallower root depths (ca. 515 

100-125 mm).    516 

 517 

 518 

 519 



 520 

 521 

3.5 Mechanical effect of root spread on slope stability 522 

 523 

The mechanical effect of root spread on slope stability (Fig. 9b) for each randomly 524 

selected point within the study area (i.e. Points A, B, C and D; Fig. 8) was limited to 525 

the topmost soil (i.e. 0-200 mm) and showed differences in light of root spread 526 

differences (Fig. 9a) provided by soil spatial properties differences. The predicted 527 

apparent root cohesion (Fig. 9c) and its subsequent mechanical effect on slope 528 

stability (Fig. 9d) for the 3 studied species and for the 2 additional treatments (i.e. oak 529 

tree and bare soil) pointed that it was Erigeron acris the most effective herb species 530 

Figure 8. RPDM spatial predictions for the rooting depth (mm) at which 95 % of the root system can be found (i.e. 
z95=3b) in the soil in our study site, and points A, B, C and D at which root reinforcement profiles were assessed.   

 



from the soil-root reinforcement point. However, no statistically significant 531 

differences were found between the 5 considered treatments (χ2=7.82, df=4). 532 

 533 

 534 

4. Discussion 535 

 536 

4.1 Climate parameters 537 

 538 

All the stations presented a similar, and lower, ETP with respect to R (Table 4), 539 

representative of humid climates (UNEP, 1992), confirming that Laio´s original 540 

Figure 9. a) Predicted root spread in terms of the root cross-sectional area (Ar) at four different points (i.e. pixels) 
within the study site and indicated in Fig. 7 b) Predicted Factor of Safety (FoS) profiles at the four points indicated 
in Fig. 7 c) Predicted apparent root cohesion profiles assuming fully-vegetated unit area of ground by each of the 
considered plant species d) Estimated Factor of Safety (FoS) profiles for each considered vegetation cover and 
bare soil, where FoS < 1 = slope failure and Fos >1 = slope stable.   

 



model (Laio et al., 2006) is not applicable to our study area and supporting the need 541 

of modification for our study site. In addition, the shape of the rainfall intensity 542 

distribution function (Fig. 4a) was exponential for all the studied rainfall time series 543 

belonging to our study site. Hence, according to Laio’s (2006) original model, the 544 

root systems in our study region should be expected to be exponentially shaped; 545 

supporting the assumption made in this regard (see 2.3.1).    546 

In reference to the growing season duration (Table 4), only minor differences were 547 

found between all the considered meteorological stations and with no summer 548 

dormancy. The late start of the growing season in our study area compared to warmer 549 

regions (e.g. Preti et al., 2010; Tron et al., 2014) would lead to a late start of the 550 

vegetation activity that, for the case of annual herbs, would produce a negligible 551 

effect on shallow soil instabilities until very late in the spring season. On the other 552 

hand, rainfall events were evenly distributed over the entire year throughout the 553 

considered time series (Fig. 4b). Consequently, the duration of the growing season 554 

was not expected to have a significant impact on the RPDM predictions in this regard 555 

(see 4.4). Nonetheless, in case of an uneven rainfall distribution throughout the year 556 

(i.e. seasonal), an accurate determination of the growing season duration would be 557 

paramount for a better prediction of the root distribution profiles (Tron et al., 2014).   558 

Both the mean annual rainfall (R), as well as the mean rainfall intensity during the 559 

growing season (α) were considerably lower in our study site than for the rest of the 560 

stations (Table 4) which presented wetter conditions. As a result of this, and based on 561 

RPDM formulation (see 2.3), shallower root systems would be expected in our study 562 

site in comparison with sites closer to the other meteorological stations.  563 

 564 

4.2. Soil parameters 565 



The results from the soil parameterisation (Table 5) suggest that rainfall infiltration 566 

will not be constrained by the soil properties and the AWC to plants (n(θfc-θwp)) will 567 

be adequate for the development of root systems in depth. According to this, we 568 

believe that rainfall infiltration will mainly be driven by gravity (i.e. producing a 569 

vertical flow) despite the terrain steepness (Lu and Godt, 2013). Although runoff will 570 

also be fostered by the topographical conditions once the topsoil moisture approaches 571 

saturation levels (Mein and Larson, 1973), on average (i.e. throughout the growing 572 

season) this will not affect significantly the water availability for root development 573 

(Tron et al., 2014). Additionally, lateral flow will not likely be produced until 574 

infiltrating water reaches the bedrock (Neitsch et al., 2011), which, presumably, is out 575 

of the root system’s influence as root systems tend to be relatively shallow in 576 

temperate humid climates (Schenk and Jackson, 2002).        577 

 578 

4.3 Root spread and plant parameters  579 

 580 

4.3.1 Root spread 581 

 582 

The obtained exponential root profiles (Figs. 6a-6c) validate the assumption of 583 

considering an exponentially shaped root distribution profile and corroborate Laio’s 584 

notion (Laio et al., 2006) that the rainfall intensity distribution function largely 585 

determines the root system’s shape in the soil profile. However, on an individual 586 

basis, it was observed that some profiles better resembled a gamma shaped 587 

distribution (unpublished data). Hence, local ecological factors other than rainfall 588 

distribution and water availability may have an influence on the shape of the root 589 

profile (e.g. Casper et al., 2003; Schenk, 2005). 590 



All root systems just explored the uppermost soil profile (i.e. 0-300 mm b.g.l) and in 591 

depths depending on the plant biomass (Fig. 6a-c; Table 6). In the same line, it was 592 

also observed that the proportion of rooted soil (i.e. RAR) varied with plant biomass 593 

(Table 6, Figs. 6a-c); the higher the plant biomass the higher the root cross-sectional 594 

area in the topmost soil horizons. The fact that higher biomass plants tend to spread 595 

wider and deeper may be related to the plant’s own stabilisation in the ground 596 

(Chiatante et al., 2003) or related to resources use efficiency and competition issues 597 

with other plant species (Schenk, 2005). 598 

The values of root exploration depth were in good agreement with globally observed 599 

values for cool-temperate meadows (Schenk and Jackson, 2002; Yang et al., 2009), 600 

alpine herbs (Burylo et al., 2011), and for cool temperate ecosystems in general, 601 

where the upper 200 mm of the soil profile contains, on average, the majority of all 602 

roots (Schenk & Jackson, 2002). For the case of Rumex obtusifolius, its root 603 

distribution matched the observations gathered in Laan et al. (1989) for riparian 604 

ecosystems in the Netherlands. Our results were more realistic than the reported in the 605 

literature (Cannadell et al., 1996; Schenk and Jackson, 2005), where it was postulated 606 

that root systems could explore as much as 2 m depth of the soil profile for climate 607 

parameters matching our study site’s which is not achieved even by woody plants in 608 

the UK (e.g. Nicoll & Amstrong, 1998; Crow, 2005). It is worth noting that shallow 609 

root systems were expected to be found as, indicated earlier (see 2.3.1), plant water 610 

availability will not be constrained in the topmost soil horizons in temperate humid 611 

climates. Nonetheless, it must be borne in mind that the whole root systems were 612 

excavated from their natural environment, and different records may be obtained with 613 

onsite measurement methods, such as the profile wall method (Böhm, 1979). 614 

Regarding the observed RAR values, these were in all cases lower than the values 615 



indicated, for example, in Comino et al. (2010) for other herbaceous species at a 616 

hypothetical shear plane of 100 mm. This indicates that the approach employed herein 617 

for measuring the root cross-sectional area did not lead to overestimation of its value.  618 

 619 

4.3.2 Plant parameters 620 

 621 

Given that plant biomass had a significant effect on the root spread, the plant 622 

allometry or the relationship between above and belowground vegetative parts, was 623 

expected to be the key parameter for readily providing information on the root spread 624 

using less invasive sampling methods and to support decisions on plant selection for 625 

slope stabilisation. 626 

As stated earlier (see 3.1.3), the three studied plant species showed different 627 

allometric relationships between their respective above and belowground vegetative 628 

parts (Figs. 6d-f). For the case of Rumex obtusifolius and Silene dioica a complete 629 

isometric relationship was found (Figs. 6e-f), as indicated by Niklas (2005) for the 630 

case of non-woody plant species. On the contrary, for the case of Erigeron acris an 631 

exponential relationship was found between the two vegetative parts (Fig 6d), which 632 

is not commonly observed in herbaceous plant species (Cheng and Niklas, 2007). The 633 

value of α’ we recorded for E. acris was 0.43 (n=11, SE=0.103; Table 6) which 634 

compares to the value of ¾ in the original WBE model (West et al., 1997). This may 635 

be due to errors in the measuring technique (Enquist et al., 1998), or due to the limited 636 

sample size. On the other hand, although we did not log-transformed the considered 637 

variables (i.e. Ma and Mr), as it is normally the case in most biometrical studies (West 638 

et al., 1997), a clear allometric relationship was directly found using the 639 

untransformed variables and with an ordinary least squares regression (OLS); which 640 



may be valid for plant species with lower biomass. In any case, the fitting parameters 641 

β and α’ differed across the three studied plant species, giving support to the idea of 642 

‘non-universal’ scaling allometric parameters (Li et al., 2005). Nevertheless, it is 643 

worth noting that the WBE general model (West et al., 1997; Enquist et al., 1998) 644 

states that the scaling parameters are predicted to change in very precise numerical 645 

ways attending to ontogeny or differences in ecological settings. Therefore, further 646 

research is recommended to clarify the sensitivity of β and α’ to different ecological 647 

factors (e.g. light, nutrients, water, topography) and shed light on the employability of 648 

these plant parameters upon plant selection for eco-engineering purposes.  649 

 650 

4.4 Root profile distribution model (RPDM) 651 

 652 

4.4.1 Model predictions and quality 653 

 654 

The predictive capacity of RPDM was shown to be very high in all cases (Figs. 6a-c 655 

and Table 6) as both the root distribution profiles (Figs. 6a-c) and coefficients of 656 

determination (Table 6) pointed out. It must be borne in mind, however, that a better 657 

goodness of fit was obtained when data from the in situ meteorological station were 658 

employed as inputs. This outcome, despite stressing the realistic behavior of RPDM, 659 

also highlights the relevance of using relevant site-specific data for predicting root 660 

distribution profiles accurately, given that a level of natural variability should be 661 

expected even within one relatively small study site. In this sense, the RPDM root 662 

profile predictions were larger when inputs from the other 6 meteorological stations 663 

were considered (Figs. 6a-c), as the rainfall values (Table 4) and the chances for 664 

deeper water infiltration in the soil were higher. Nonetheless, RPDM also envisaged 665 



that when root systems were deeper, as a consequence of wetter conditions, the rooted 666 

area in the uppermost soil horizons (i.e. 0-50 mm) would also be smaller compared to 667 

our study site’s drier conditions. This observation, although maybe related to resource 668 

allocation issues (e.g. Schenk, 2005) captured by RPDM, was generated by the fact 669 

that the plant biomass was not allowed to change under this wetter conditions and, 670 

thus, it had to be distributed over a greater soil depth.    671 

On the other hand, the root spread predictions for the plant species with the highest 672 

biomass (i.e. Rumex obtusifolius) showed deeper and denser root systems, as 673 

indicated before. The plant biomass determined the root system biomass (i.e. Mr; see 674 

2.2.3) through the established plant-species-specific allometric relationship (see 675 

4.3.2), in turn affecting the value of the scaling parameter (Aro; see 2.3.1) which 676 

determined the root distribution profile. Thus, it can be expected that RPDM will 677 

predict deeper and denser root systems for higher biomass and woody vegetation (e.g. 678 

Gonzalez-Ollauri and Mickovski, 2014; see 4.4.2), as it is the case in reality 679 

(Ekanayake and Phillips, 2002; Schenk and Jackson, 2002; Mickovski et al., 2008). 680 

Nonetheless, it must be borne in mind that while for Erigeron acris and Rumex 681 

obtusifolius the mean Ma between all the sampled individuals was utilized as input, 682 

for Silene dioica a better output was obtained when using the sum of Ma for all the 683 

studied individuals (RPDM C and D; Table 6). This outcome may be due to the 684 

limited sample size and further research is recommended to clarify what approach 685 

performs best for low biomass plant species.  686 

With regard to the prediction of Aro and b (Table 6), RPDM projected values for both 687 

parameters satisfactorily when the study site´s meteorological inputs were employed. 688 

However, it must be borne in mind that he predicted b values were well below respect 689 

to the values reported in Preti et al. (2010) for bushy species in a Mediterranean 690 



setting. This outcome was expected given the climatic differences with our study site,  691 

where AWC to plants is expected to accumulate at the soil surface, hence, leading to 692 

shallower root systems in temperate humid climates as indicated in 4.3.1. Nontheless, 693 

RPDM presented two main limitations in relation to the parameters Aro and b. On the 694 

one hand, Aro is determined by the plant biomass and allometry. Since the latter 695 

seemed not to be ‘universal’ in spite of the ‘global’ relationships for different plant 696 

types and biomes reported in the literature (e.g. Cheng & Niklas, 2007), costly 697 

species-specific information is needed to feed the model. On the other, b is entirely 698 

dependent on the site’s pedoclimatic conditions, meaning that the same mean rooting 699 

depth is predicted regardless of the vegetation type, family or species.  700 

 701 

4.4.2 Model sensitivity 702 

 703 

The sensitivity analysis showed that RDPM is relatively sensitive (i.e. PV>20%) to 704 

plant features (i.e. biomass and allometry) and to rainfall intensity, and relatively 705 

insensitive (i.e. PV<20%) to the soil properties (Figs. 7a-d). The parameters that 706 

presented a negative sensitivity index (SI) generated an opposite effect on the root 707 

spread when they were higher in value. Contrariwise, those parameters that presented 708 

a positive SI favored the development of bigger root systems when their value was 709 

higher. 710 

The two most sensitive, Ma and β, directly affect the proportion of root biomass (Mr), 711 

the value of Aro for a given plant species, and the root system depth. A three fold 712 

increase of ß , for instance, led to a drastic reduction of the root profile distribution 713 

(Fig. 7c), whereas a three fold increase in plant biomass led to a considerably deeper 714 

and wider root system profile (Fig. 7c). Again, these outcomes highlight how 715 



important is to have species-specific information to accurately predict the distribution 716 

of the root profile which would be easily obtained for known plant allometric 717 

parameters. Regarding the third most sensitive parameter, as it has been discussed 718 

previously, an increase of α would enhance the chances of deeper water infiltration in 719 

the soil profile, favoring the development of root systems that explore the soil profile 720 

deeper as deeper water will be available. In addition, the root mass density (ρr) was 721 

relatively sensitive which highlighted the fact that plant-species specific values of ρr 722 

easily estimated by the water volume displacement method (e.g. Hughes, 2005) could 723 

lead to better root spread predictions.  724 

The soil properties, even though shown to be insensitive, produced a subtle effect on 725 

the root density distribution (i.e. r(z)= b-1e-z/b; Laio et al., 2006) that was captured by 726 

RPDM (Fig. 7d) which may be related to the allocation and availability of resources 727 

in the soil profile (Schenk, 2005). For example, a 10-fold decrease in organic matter 728 

content led to a shallower and less extensive root system. On the contrary, a 3-fold 729 

decrease in soil porosity led to a smaller but deeper root system that would be better 730 

adapted to exploring and using resources deeper in the soil profile as observed in the 731 

nature by the authors. As the plants can grow on nearly any substrate, and based on 732 

our results, as well as the literature (e.g. Schenk and Jackson, 2002; Laio et al., 2006), 733 

the plant root development would be mainly determined by the climate with the soil 734 

properties affecting plant nourishment and wellbeing.   735 

 736 

4.5 Spatially distributed RPDM 737 

 738 

Spatially distributed RPDM successfully predicted a range of rooting depths (i.e. 739 

z95=3b) depending on the terrain features (Fig. 8). In this regard, RPDM predicted 740 



shallower rooting depths for steeper terrain (i.e. lighter areas in Fig. 8) opposed to flat 741 

zones (i.e. darker areas in Fig. 8). The obtained outcome was consistent with the 742 

observations indicated in Hales et al. (2009), stating that vertical root distributions 743 

vary as a function of landscape position, likely encouraged by resources availability 744 

(Schenk, 2005). In this sense, topographical gradients may make water and nutrients 745 

less prone to accumulate along the slope gradient, being a plausible cause for 746 

shallower root spread in steep terrain. Additionally, plastic adaptations to which 747 

plants growing on slopes are subject to could also induce root spread alterations, such 748 

as the upslope root spread for plant anchorage purposes (Chiatante et al., 2003), 749 

which allegedly would prevent the root system from spreading downwards if the 750 

allometry holds. Nonetheless, it is worth noting that the model outcome was 751 

determined by the ability of RF to capture realistically the spatial heterogeneity of the 752 

soil properties driving root spread. In this sense, soil spatial input variables for RPDM 753 

(Table 3), obtained through implementing RF, showed a good fit with the 754 

environmental covariates in terms of the explained variance (Table 7). These 755 

outcomes therefore indicate that RF can be a powerful machine learning technique 756 

when applied to the prediction of soil spatial attributes. However, for the case of plant 757 

biomass, refinement of the employed covariates and inputs is needed to improve the 758 

model’s output, as its goodness of fit was not that satisfactory. Additonally, other 759 

spatial covariates than the ones considered herein will have an influence on the spatial 760 

distribution of plant biomass (e.g. soil nutrients, sunlight exposure, etc.). We also 761 

believe that temporal data from more than just one growing season would enhance the 762 

model’s quality as well, since the relationship, if any, between plant biomass and the 763 

other environmental covariates should be expected to be clearer with a larger dataset. 764 

 765 



4.6. Mechanical effect of root spread on slope stability 766 

 767 

When the root profiles from 4 random pixels were retrieved from within our study site 768 

(Fig. 8; Points A, B, C and D), prediction differences in terms of root spread and soil-769 

root mechanical reinforcement were clearly observed (Figs. 9a-b). Vegetated flat 770 

areas (e.g. Fig. 8, point B), for instance, presented considerably higher stability (Fig. 771 

9b), as it could be expected. On sloping zones (i.e. Fig. 8, points A and D), however, a 772 

denser plant cover (e.g. Fig. 8, point A) provided higher soil-root mechanical 773 

reinforcement (Fig. 9a) and better stability conditions in depth (Fig. 9b). These 774 

observations further verify the behavior of the spatially distributed RPDM.   775 

In terms of the considered plant species under equal soil properties, the one with the 776 

highest biomass (i.e. Quercus robur) presented the highest and deepest soil-root 777 

mechanical reinforcement (Figs. 9c-d). Nonetheless, despite having assigned to the 778 

former a Tr that doubled the one assigned to the herbaceous species (i.e. 8 MPa vs. 779 

3.73 MPa), its mechanical reinforcement was comparable to the one provided by the 780 

lowest Ma species (i.e. Erigeron acris). In fact, it was Erigeron acris, out of three 781 

studied plant species, the one that showed the best performance from the soil 782 

mechanical reinforcement point. This outcome has its origins in the values found for 783 

the allometric fitting parameters (Table 6), which, as it has been stated, determine Aro 784 

and ultimately scale the extent of the root spread. This issue led to Silene dioica to 785 

present the lowest Mr and hence, the lowest mechanical effect (Figs 9c-d). In addition, 786 

it supports the potential significance of plant allometry respect to root mechanical 787 

reinforcement (Hwang et al., 2015), which should be further investigated as potential 788 

cost-effective proxy for plant species selection in eco-engineering interventions, as 789 

indicated before. Contrariwise, it is worth stressing the performance of Rumex 790 



obtusifolius that, in turn, seemed to be also detected by its allometry. Despite having 791 

the highest biomass, and the deepest root spread (Fig. 7, Table 6), its mechanical 792 

reinforcement effect was considerably lower (χ2=99, df=61) than for Erigeron acris, 793 

for which Mr was 4 times smaller on an individual basis (Table 6). However, when a 794 

fully-vegetated unit area of ground was considered, the belowground biomass for 795 

Rumex was nearly 6 times lower than for E.acris (i.e. 701.79 g vs. 4127.72 g) due to 796 

the found allometry and despite being the total aboveground biomass per unit area of 797 

ground (Ma
T) more than 4 times higher for Rumex obtusifolius (Table 6). Indeed, 798 

Rumex obtusifolius’ root system is basically a taproot (Fig. 5) that, from the 799 

mechanical point, would mainly provide anchorage to the plant. Upon soil-slope 800 

failure this taproot would likely experiment a pullout mechanism (Mickovski et al., 801 

2009) conferring less energy to the soil than root breakage (Waldron and Dakessian, 802 

1981). Thus, its mechanical contribution to soil reinforcement should be assessed with 803 

a pullout model (e.g. Ennos, 1990) instead of with a breakage model and a root-added 804 

cohesion as it was the case here.   805 

In any case, our model showed that all the considered plant species, besides Silene 806 

dioica (i.e. lowest Mr), would contribute noticeably to slope stability (Fig. 9d) within 807 

the topmost soil horizons. If predictions were confirmed, plant species like Erigeron 808 

acris could prevent the loss of up to 0.4 m3 of soil per m2 of land considering that 809 

there is a mechanical reinforcement of about 100 mm with respect to bare soil (Fig. 810 

9d). However, no statistically significant differences were found between the 5 811 

considered treatments (χ2=7.82, df=4).  This outcome may be due to not considering 812 

the hydrological effects of vegetation and assuming hydrostatic conditions in the soil 813 

profile. Under hydrodynamic conditions marked differences between bare and 814 

vegetated soil would be expected (Gonzalez-Ollauri and Mickovski, 2014). In this 815 



sense, soil suction triggered by plant water uptake would enhance the soil stability 816 

conditions (e.g. Wilkinson et al., 2002). In addition, it is worth noting that all the FoS 817 

profiles converged in 1 (i.e. limit equilibrium) at the lower boundary of the soil 818 

profile (Fig. 9d). This is produced due to setting 500 mm as the lower boundary of our 819 

system (i.e. critical plane) and due to assuming cohesionless conditions to stress plant 820 

effects.  821 

 822 

5. Conclusions 823 

 824 

Based on our observations and findings, it can be concluded that:  825 

 826 

- Pioneer herbaceous plant species present shallow root systems in temperate 827 

humid climates that can noticeably contribute to reduce soil loss and 828 

landslides within the uppermost soil horizons. 829 

 830 

- Root spread is largely determined by climatic conditions, precisely, by the 831 

amount and distribution of rainfall, corroborating hydrotropism principles. 832 

 833 

- Plant biomass and allometry are key to determine the degree of soil-root 834 

reinforcement and, therefore, the eco-engineering potential of certain plant 835 

species. 836 

 837 

- Our model successfully predicts root spread in temperate humid climates on a 838 

spatial basis, being its predictive capacity considerably improved when local 839 

input data are employed. 840 



 841 

- Machine-learning techniques, such as RF, present outstanding features to 842 

enhance the quality of spatial information and predictions. 843 

 844 

- The hydrological effects of vegetation against landslides should be considered 845 

to have a better picture of the eco-engineering potential of given plant species. 846 

Furthermore, the relationship between plant allometry, climate and root-soil 847 

reinforcement, along with root tensile strength, should be further explored in 848 

light of an effective and sustainable selection of plant species. We also 849 

recommend testing our modelling approach on different plant species and 850 

communities and on different sites presenting similar climatic conditions for 851 

its final validation.       852 
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