836 research outputs found

    The Current Density Distribution in a Segmented-in-Series SOFC,”

    Get PDF
    A common tubular solid oxide fuel cell (SOFC) design consists of segmented-in-serie

    Vector-soliton collision dynamics in nonlinear optical fibers

    Full text link
    We consider the interactions of two identical, orthogonally polarized vector solitons in a nonlinear optical fiber with two polarization directions, described by a coupled pair of nonlinear Schroedinger equations. We study a low-dimensional model system of Hamiltonian ODE derived by Ueda and Kath and also studied by Tan and Yang. We derive a further simplified model which has similar dynamics but is more amenable to analysis. Sufficiently fast solitons move by each other without much interaction, but below a critical velocity the solitons may be captured. In certain bands of initial velocities the solitons are initially captured, but separate after passing each other twice, a phenomenon known as the two-bounce or two-pass resonance. We derive an analytic formula for the critical velocity. Using matched asymptotic expansions for separatrix crossing, we determine the location of these "resonance windows." Numerical simulations of the ODE models show they compare quite well with the asymptotic theory.Comment: 32 pages, submitted to Physical Review

    Improved Semiclassical Approximation for Bose-Einstein Condensates: Application to a BEC in an Optical Potential

    Full text link
    We present semiclassical descriptions of Bose-Einstein condensates for configurations with spatial symmetry, e.g., cylindrical symmetry, and without any symmetry. The description of the cylindrical case is quasi-one-dimensional (Q1D), in the sense that one only needs to solve an effective 1D nonlinear Schrodinger equation, but the solution incorporates correct 3D aspects of the problem. The solution in classically allowed regions is matched onto that in classically forbidden regions by a connection formula that properly accounts for the nonlinear mean-field interaction. Special cases for vortex solutions are treated too. Comparisons of the Q1D solution with full 3D and Thomas-Fermi ones are presented.Comment: 14 pages, 5 figure

    Hard loss of stability in Painlev\'e-2 equation

    Full text link
    A special asymptotic solution of the Painlev\'e-2 equation with small parameter is studied. This solution has a critical point t∗t_* corresponding to a bifurcation phenomenon. When t<t∗t<t_* the constructed solution varies slowly and when t>t∗t>t_* the solution oscillates very fast. We investigate the transitional layer in detail and obtain a smooth asymptotic solution, using a sequence of scaling and matching procedures

    Theoretical approach to two-dimensional traffic flow models

    Get PDF
    In this paper we present a theoretical analysis of a recently proposed two-dimensional Cellular Automata model for traffic flow in cities with the novel ingredient of turning capability. Numerical simulations of this model show that there is a transition between a freely moving phase with high velocity to a jammed state with low velocity. We study the dynamics of such a model starting with the microscopic evolution equation, which will serve as a basis for further analysis. It is shown that a kinetic approach, based on the Boltzmann assumption, is able to provide a reasonably good description of the jamming transition. We further introduce a space-time continuous phenomenological model leading to a couple of partial differential equations whose preliminary results agree rather well with the numerical simulations.Comment: 15 pages, REVTeX 3.0, 7 uuencoded figures upon request to [email protected]

    Long ncRNA Landscape in the Ileum of Treatment-Naive Early-Onset Crohn Disease.

    Get PDF
    Long noncoding RNAs (lncRNA) are key regulators of gene transcription and many show tissue-specific expression. We previously defined a novel inflammatory and metabolic ileal gene signature in treatment-naive pediatric Crohn disease (CD). We now extend our analyses to include potential regulatory lncRNA.Using RNAseq, we systematically profiled lncRNAs and protein-coding gene expression in 177 ileal biopsies. Co-expression analysis was used to identify functions and tissue-specific expression. RNA in situ hybridization was used to validate expression. Real-time polymerase chain reaction was used to test lncRNA regulation by IL-1ÎČ in Caco-2 enterocytes.We characterize widespread dysregulation of 459 lncRNAs in the ileum of CD patients. Using only the lncRNA in discovery and independent validation cohorts showed patient classification as accurate as the protein-coding genes, linking lncRNA to CD pathogenesis. Co-expression and functional annotation enrichment analyses across several tissues and cell types 1showed that the upregulated LINC01272 is associated with a myeloid pro-inflammatory signature, whereas the downregulated HNF4A-AS1 exhibits association with an epithelial metabolic signature. We confirmed tissue-specific expression in biopsies using in situ hybridization, and validated regulation of prioritized lncRNA upon IL-1ÎČ exposure in differentiated Caco-2 cells. Finally, we identified significant correlations between LINC01272 and HNF4A-AS1 expression and more severe mucosal injury.We systematically define differentially expressed lncRNA in the ileum of newly diagnosed pediatric CD. We show lncRNA utility to correctly classify disease or healthy states and demonstrate their regulation in response to an inflammatory signal. These lncRNAs, after mechanistic exploration, may serve as potential new tissue-specific targets for RNA-based interventions

    The Composition of Titan's Lower Atmosphere and Simple Surface Volatiles as Measured by the Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer Experiment

    Get PDF
    The Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer (GCMS) determined the composition of the Titan atmosphere from ~140km altitude to the surface. After landing, it returned composition data of gases evaporated from the surface. Height profiles of molecular nitrogen (N2), methane (CH4) and molecular hydrogen (H2) were determined. Traces were detected on the surface of evaporating methane, ethane (C2H6), acetylene (C2H2), cyanogen (C2N2) and carbon dioxide (CO2). The methane data showed evidence that methane precipitation occurred recently. The methane mole fraction was (1.48+/-0.09) x 10(exp -2) in the lower stratosphere (139.8 km to 75.5 km) and (5.65+/-0.18) x 10(exp -2) near the surface (6.7 km to the surface). The molecular hydrogen mole fraction was (1.01+/-0.16) x 10(exp -3) in the atmosphere and (9.90+/-0.17) x 10(exp -4) on the surface. Isotope ratios were 167.7+/-0.6 for N-14/N-15 in molecular nitrogen, 91.1+/-1.4 for C-12/C-13 in methane and (1.35+/-0.30) x 10(exp -4) for D/H in molecular hydrogen. The mole fractions of Ar-36 and radiogenic Ar-40 are (2.1+/-0.8) x 10(exp -7) and (3.39 +/-0.12) x 10(exp -5) respectively. Ne-22 has been tentatively identified at a mole fraction of (2.8+/-2.1) x 10(exp -7) Krypton and xenon were below the detection threshold of 1 x 10(exp -8) mole fraction. Science data were not retrieved from the gas chromatograph subsystem as the abundance of the organic trace gases in the atmosphere and on the ground did not reach the detection threshold. Results previously published from the GCMS experiment are superseded by this publication

    Maxwell Model of Traffic Flows

    Full text link
    We investigate traffic flows using the kinetic Boltzmann equations with a Maxwell collision integral. This approach allows analytical determination of the transient behavior and the size distributions. The relaxation of the car and cluster velocity distributions towards steady state is characterized by a wide range of velocity dependent relaxation scales, R1/2<τ(v)<RR^{1/2}<\tau(v)<R, with RR the ratio of the passing and the collision rates. Furthermore, these relaxation time scales decrease with the velocity, with the smallest scale corresponding to the decay of the overall density. The steady state cluster size distribution follows an unusual scaling form Pm∌−4Κ(m/<m>2)P_m \sim ^{-4} \Psi(m/< m>^2). This distribution is primarily algebraic, Pm∌m−3/2P_m\sim m^{-3/2}, for mâ‰Ș2m\ll ^2, and is exponential otherwise.Comment: revtex, 10 page

    Kindling the Fire: Fueling Preservice Science Teachers\u27 Interest to Teach in High-Needs Schools

    Get PDF
    This study applies psychological models of interest and motivation (i.e., a model of interest‐development and self‐determination theory) to the experiences of six preservice science Noyce scholars who participated in a teacher preparation program. The National Science Foundation\u27s Noyce grant aims to incentivize mathematics and science majors to teach in high‐needs school districts. Through this interview study, we sought to understand how Noyce scholars\u27 pre‐existing interests and their experiences in the Noyce program interact to develop individual commitments to teach in high‐needs school settings. Case studies reveal that scholars had no prior experiences in high‐needs schools, abstract ideas about teachers, students, and resources in these contexts, and varying degrees of initial connectedness to teaching in high‐needs school settings. Scholars found that site visits to diverse high‐needs schools (i.e., rural and urban) triggered their interest to teach in similar contexts. Preservice science teachers\u27 emerging interest and level of commitment to teaching in high‐needs schools following the teacher preparation program was dependent upon context‐specific mastery experiences and autonomy within their long‐term clinical field experience. This study offers implications for teacher educators who are recruiting and preparing students to teach in high‐needs school contexts
    • 

    corecore