41 research outputs found

    Myocarditis in Humans and in Experimental Animal Models

    Get PDF
    Myocarditis is defined as an inflammation of the cardiac muscle. In humans, various infectious and non-infectious triggers induce myocarditis with a broad spectrum of histological presentations and clinical symptoms of the disease. Myocarditis often resolves spontaneously, but some patients develop heart failure and require organ transplantation. The need to understand cellular and molecular mechanisms of inflammatory heart diseases led to the development of mouse models for experimental myocarditis. It has been shown that pathogenic agents inducing myocarditis in humans can often trigger the disease in mice. Due to multiple etiologies of inflammatory heart diseases in humans, a number of different experimental approaches have been developed to induce myocarditis in mice. Accordingly, experimental myocarditis in mice can be induced by infection with cardiotropic agents, such as coxsackievirus B3 and protozoan parasite Trypanosoma cruzi or by activating autoimmune responses against heart-specific antigens. In certain models, myocarditis is followed by the phenotype of dilated cardiomyopathy and the end stage of heart failure. This review describes the most commonly used mouse models of experimental myocarditis with a focus on the role of the innate and adaptive immune systems in induction and progression of the disease. The review discusses also advantages and limitations of individual mouse models in the context of the clinical manifestation and the course of the disease in humans. Finally, animal-free alternatives in myocarditis research are outlined

    Autophagy in Heart Failure: Insights into Mechanisms and Therapeutic Implications

    Full text link
    Autophagy, a dynamic and complex process responsible for the clearance of damaged cellular components, plays a crucial role in maintaining myocardial homeostasis. In the context of heart failure, autophagy has been recognized as a response mechanism aimed at counteracting pathogenic processes and promoting cellular health. Its relevance has been underscored not only in various animal models, but also in the human heart. Extensive research efforts have been dedicated to understanding the significance of autophagy and unravelling its complex molecular mechanisms. This review aims to consolidate the current knowledge of the involvement of autophagy during the progression of heart failure. Specifically, we provide a comprehensive overview of published data on the impact of autophagy deregulation achieved by genetic modifications or by pharmacological interventions in ischemic and non-ischemic models of heart failure. Furthermore, we delve into the intricate molecular mechanisms through which autophagy regulates crucial cellular processes within the three predominant cell populations of the heart: cardiomyocytes, cardiac fibroblasts, and endothelial cells. Finally, we emphasize the need for future research to unravel the therapeutic potential associated with targeting autophagy in the management of heart failure

    T Lymphocyte-Derived Exosomes Transport MEK1/2 and ERK1/2 and Induce NOX4-Dependent Oxidative Stress in Cardiac Microvascular Endothelial Cells

    Full text link
    Background: Activation of endothelial cells by inflammatory mediators secreted by CD4+ T lymphocytes plays a key role in the inflammatory response. Exosomes represent a specific class of signaling cues transporting a mixture of proteins, nucleic acids, and other biomolecules. So far, the impact of exosomes shed by T lymphocytes on cardiac endothelial cells remained unknown. Methods and results: Supernatants of CD4+ T cells activated with anti-CD3/CD28 beads were used to isolate exosomes by differential centrifugation. Activation of CD4+ T cells enhanced exosome production, and these exosomes (CD4-exosomes) induced oxidative stress in cardiac microvascular endothelial cells (cMVECs) without affecting their adhesive properties. Furthermore, CD4-exosome treatment aggravated the generation of mitochondrial reactive oxygen species (ROS), reduced nitric oxide (NO) levels, and enhanced the proliferation of cMVECs. These effects were reversed by adding the antioxidant apocynin. On the molecular level, CD4-exosomes increased NOX2, NOX4, ERK1/2, and MEK1/2 in cMVECs, and ERK1/2 and MEK1/2 proteins were found in CD4-exosomes. Inhibition of either MEK/ERK with U0126 or ERK with FR180204 successfully protected cMVECs from increased ROS levels and reduced NO bioavailability. Treatment with NOX1/4 inhibitor GKT136901 effectively blocked excessive ROS and superoxide production, reversed impaired NO levels, and reversed enhanced cMVEC proliferation triggered by CD4-exosomes. The siRNA-mediated silencing of Nox4 in cMVECs confirmed the key role of NOX4 in CD4-exosome-induced oxidative stress. To address the properties of exosomes under inflammatory conditions, we used the mouse model of CD4+ T cell-dependent experimental autoimmune myocarditis. In contrast to exosomes obtained from control hearts, exosomes obtained from inflamed hearts upregulated NOX2, NOX4, ERK1/2, MEK1/2, increased ROS and superoxide levels, and reduced NO bioavailability in treated cMVECs, and these changes were reversed by apocynin. Conclusion: Our results point to exosomes as a novel class of bioactive factors secreted by CD4+ T cells in immune response and represent potential important triggers of NOX4-dependent endothelial dysfunction. Neutralization of the prooxidative aspect of CD4-exosomes could open perspectives for the development of new therapeutic strategies in inflammatory cardiovascular diseases

    The AP-1 transcription factor Fosl-2 regulates autophagy in cardiac fibroblasts during myocardial fibrogenesis

    Get PDF
    Background: Pathological activation of cardiac fibroblasts is a key step in development and progression of cardiac fibrosis and heart failure. This process has been associated with enhanced autophagocytosis, but molecular mechanisms remain largely unknown. Methods and Results: Immunohistochemical analysis of endomyocardial biopsies showed increased activation of autophagy in fibrotic hearts of patients with inflammatory cardiomyopathy. In vitro experiments using mouse and human cardiac fibroblasts confirmed that blockade of autophagy with Bafilomycin A1 inhibited fibroblast-to-myofibroblast transition induced by transforming growth factor (TGF)-β. Next, we observed that cardiac fibroblasts obtained from mice overexpressing transcription factor Fos-related antigen 2 (Fosl-2tg) expressed elevated protein levels of autophagy markers: the lipid modified form of microtubule-associated protein 1A/1B-light chain 3B (LC3BII), Beclin-1 and autophagy related 5 (Atg5). In complementary experiments, silencing of Fosl-2 with antisense GapmeR oligonucleotides suppressed production of type I collagen, myofibroblast marker alpha smooth muscle actin and autophagy marker Beclin-1 in cardiac fibroblasts. On the other hand, silencing of either LC3B or Beclin-1 reduced Fosl-2 levels in TGF-β-activated, but not in unstimulated cells. Using a cardiac hypertrophy model induced by continuous infusion of angiotensin II with osmotic minipumps, we confirmed that mice lacking either Fosl-2 (Ccl19CreFosl2flox/flox) or Atg5 (Ccl19CreAtg5flox/flox) in stromal cells were protected from cardiac fibrosis. Conclusion: Our findings demonstrate that Fosl-2 regulates autophagocytosis and the TGF-β-Fosl-2-autophagy axis controls differentiation of cardiac fibroblasts. These data provide a new insight for the development of pharmaceutical targets in cardiac fibrosis

    TNF-α protects from exacerbated myocarditis and cardiac death by suppressing expansion of activated heart-reactive CD4+ T cells

    Get PDF
    BACKGROUND AND AIMS Tumour necrosis factor α (TNF-α) represents a classical proinflammatory cytokine and its increased levels positively correlate with the severity of many cardiovascular diseases. Surprisingly, some heart failure patients receiving high doses of anti- TNF-α antibodies showed serious health worsening. This work aimed to examine the role of TNF-α signalling on the development and progression of myocarditis and heart-specific autoimmunity. METHODS AND RESULTS Mice with genetic deletion of TNF-α (Tnf+/- and Tnf-/-) and littermate controls (Tnf+/+) were used to study myocarditis in the inducible and the transgenic T cell receptor (TCR-M) models. Tnf+/- and Tnf-/- mice immunized with α-myosin heavy chain peptide (αMyHC) showed reduced myocarditis incidence but the susceptible animals developed extensive inflammation in the heart. In the TCR-M model, defective TNF-α production was associated with increased mortality at a young age due to cardiomyopathy and cardiac fibrosis. We could confirm that TNF-α as well as the secretome of antigen-activated heart-reactive effector CD4+ T (Teff) cells effectively activated the adhesive properties of cardiac microvascular endothelial cells (cMVECs). Our data suggested that TNF-α produced by endothelial in addition to Teff cells promoted leucocyte adhesion to activated cMVECs. Analysis of CD4+ T lymphocytes from both models of myocarditis showed a strongly increased fraction of Teff cells in hearts, spleens, and in the blood of Tnf+/- and Tnf-/- mice. Indeed, antigen-activated Tnf-/- Teff cells showed prolonged long-term survival and TNF-α cytokine-induced cell death of heart-reactive Teff. CONCLUSIONS TNF-α signalling promotes myocarditis development by activating cardiac endothelial cells. However, in the case of established disease, TNF-α protects from exacerbating cardiac inflammation by inducing activation-induced cell death of heart-reactive Teff. These data might explain the lack of success of standard anti-TNF-α therapy in heart failure patients and open perspectives for T cell-targeted approaches

    Dersimelagon, a novel oral melanocortin 1 receptor agonist, demonstrates disease-modifying effects in preclinical models of systemic sclerosis

    Get PDF
    BACKGROUND Activation of melanocortin 1 receptor (MC1R) is known to exert broad anti-inflammatory and anti-fibrotic effects. The purpose of this study is to investigate the potential of dersimelagon, a novel oral MC1R agonist, as a therapeutic agent for systemic sclerosis (SSc). METHODS The effects of dersimelagon phosphoric acid (MT-7117) on skin fibrosis and lung inflammation were evaluated in bleomycin (BLM)-induced SSc murine models that were optimized for prophylactic and therapeutic evaluation. Microarray-based gene expression analysis and serum protein profiling were performed in the BLM-induced SSc models. The effect of MT-7117 on transforming growth factor-β (TGF-β)-induced activation of human dermal fibroblasts was evaluated in vitro. Immunohistochemical analyses of MC1R expression in the skin of SSc patients were performed. RESULTS Prophylactic treatment with MT-7117 (≥ 0.3 mg/kg/day p.o.) significantly inhibited skin fibrosis and lung inflammation, and therapeutic treatment with MT-7117 (≥ 3 mg/kg/day p.o.) significantly suppressed the development of skin fibrosis in the BLM-induced SSc models. Gene array analysis demonstrated that MT-7117 exerts an anti-inflammatory effect via suppression of the activation of inflammatory cells and inflammation-related signals; additionally, vascular dysfunction was extracted as the pathology targeted by MT-7117. Serum protein profiling revealed that multiple SSc-related biomarkers including P-selectin, osteoprotegerin, cystatin C, growth and differentiation factor-15, and S100A9 were suppressed by MT-7117. MT-7117 inhibited the activation of human dermal fibroblasts by suppressing TGF-β-induced ACTA2 (encoding α-smooth muscle actin) mRNA elevation. MC1R was expressed by monocytes/macrophages, neutrophils, blood vessels (endothelial cells), fibroblasts, and epidermis (keratinocytes) in the skin of SSc patients, suggesting that these MC1R-positive cells could be targets for MT-7117. CONCLUSIONS MT-7117 demonstrates disease-modifying effects in preclinical models of SSc. Investigations of its mechanism of action and target expression analyses indicate that MT-7117 exerts its positive effect by affecting inflammation, vascular dysfunction, and fibrosis, which are all key pathologies of SSc. The results of the present study suggest that MT-7117 is a potential therapeutic agent for SSc. A phase 2 clinical trial investigating the efficacy and tolerability of MT-7117 in patients with early, progressive diffuse cutaneous SSc is currently in progress

    Complexity of TNF-α Signaling in Heart Disease

    Get PDF
    Heart disease is a leading cause of death with unmet clinical needs for targeted treatment options. Tumor necrosis factor alpha (TNF-α) represents a master pro-inflammatory cytokine that plays an important role in many immunopathogenic processes. Anti-TNF-α therapy is widely used in treating autoimmune inflammatory disorders, but in case of patients with heart disease, this treatment was unsuccessful or even harmful. The underlying reasons remain elusive until today. This review summarizes the effects of anti-TNF-α treatment in patients with and without heart disease and describes the involvement of TNF-α signaling in a number of animal models of cardiovascular diseases. We specifically focused on the role of TNF-α in specific cardiovascular conditions and in defined cardiac cell types. Although some mechanisms, mainly in disease development, are quite well known, a comprehensive understanding of TNF-α signaling in the failing heart is still incomplete. Published data identify pathogenic and cardioprotective mechanisms of TNF-α in the affected heart and highlight the differential role of two TNF-α receptors pointing to the complexity of the TNF-α signaling. In the light of these findings, it seems that targeting the TNF-α pathway in heart disease may show therapeutic benefits, but this approach must be more specific and selectively block pathogenic mechanisms. To this aim, more research is needed to better understand the molecular mechanisms of TNF-α signaling in the failing heart

    Pathogenesis of ischaemic and non-ischaemic heart diseases in rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is characterised by a chronic inflammatory condition of the joints, but the comorbidities of RA predominantly contribute to the reduced lifespan associated with this disease. Clinical data indicate that cardiovascular disease is the major comorbidity associated with mortality in RA. In this review, we aimed to describe the pathogenesis of heart failure in RA. First, we emphasised the fundamental differences between ischaemic and non-ischaemic heart diseases and referred to their relevance in excessive cardiovascular-dependent mortality in RA. Second, we highlighted aspects of asymptomatic changes in cardiac tissue and in coronary blood vessels that are commonly found in patients with diagnosed RA. Third, we focused on high-grade systemic inflammation as a key trigger of ischaemic and non-ischaemic heart diseases in RA, and described the implication of conventional and biologic antirheumatic medications on the development and progression of heart disease. In particular, we discussed the roles of tumour necrosis factor-alpha (TNF-α) and anti-TNF-α therapies on the development and progression of ischaemic and non-ischaemic heart diseases in RA
    corecore