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Myocarditis is defined as an inflammation of the cardiac muscle. In humans, various

infectious and non-infectious triggers induce myocarditis with a broad spectrum of

histological presentations and clinical symptoms of the disease. Myocarditis often

resolves spontaneously, but some patients develop heart failure and require organ

transplantation. The need to understand cellular and molecular mechanisms of

inflammatory heart diseases led to the development of mouse models for experimental

myocarditis. It has been shown that pathogenic agents inducing myocarditis in humans

can often trigger the disease in mice. Due to multiple etiologies of inflammatory

heart diseases in humans, a number of different experimental approaches have been

developed to induce myocarditis in mice. Accordingly, experimental myocarditis in mice

can be induced by infection with cardiotropic agents, such as coxsackievirus B3 and

protozoan parasite Trypanosoma cruzi or by activating autoimmune responses against

heart-specific antigens. In certain models, myocarditis is followed by the phenotype of

dilated cardiomyopathy and the end stage of heart failure. This review describes the most

commonly used mouse models of experimental myocarditis with a focus on the role of

the innate and adaptive immune systems in induction and progression of the disease.

The review discusses also advantages and limitations of individual mouse models in the

context of the clinical manifestation and the course of the disease in humans. Finally,

animal-free alternatives in myocarditis research are outlined.

Keywords: myocarditis, animal models, coxsackievirus B3, Chagas disease, heart-specific autoimmunity,

experimental autoimmune myocarditis

INTRODUCTION

TheWorld Heart Federation estimated that about 400,000 persons die annually worldwide because
of inflammatory heart diseases. Epidemiologic post-mortem studies identified myocarditis as an
important cause of unexpected and sudden death. Myocarditis has been implicated in cardiac
sudden deaths in young adults at the rate of 8.6–12% (1, 2). The occurrence of myocarditis in
sudden death in children was reported at the rate of 17% (3). Considering cardiovascular death in
children and young adults, myocarditis was a major cause in 10–42% cases (4).

Myocarditis is classified as an inflammatory disease of the heart muscle. Traditionally,
myocarditis is diagnosed based on endomyocardial biopsies. According to the widely used “Dallas”
criteria published in 1987, a diagnosis of active myocarditis requires the presence of inflammatory
infiltrates of non-ischemic origin in myocardial tissue associated with necrosis and/or degeneration
of adjacent cardiomyocytes. Presence of inflammatory infiltrates in the absence of apparent
myocyte damage is classified as borderline myocarditis (5). The definition of myocarditis has
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been more recently enumerated by the ESC Working Group on
Myocardial and Pericardial Diseases, which proposed abnormal
number of inflammatory infiltrates in myocardial tissue as
≥14 leucocytes/mm2 including up to 4 monocytes/mm2 with
the presence of ≥7 cells/mm2 CD3-positive T lymphocytes
(6). These criteria have become widely accepted. Beside this
common histological feature of inflammatory condition of the
heart, there is a high diversity observed in the disease cause,
characteristic of inflammatory infiltrates, clinical symptoms,
course of inflammation, and the prognosis.

PATHOPHYSIOLOGY OF MYOCARDITIS
IN HUMAN

From Myocarditis to Dilated
Cardiomyopathy
Patients with myocarditis, proven via biopsies, show 55–
80% 5-year transplantation-free survival (7–10). Mortality is
observed not only during the acute phase, but also during the
follow up. Myocarditis is a progressive disease with two post-
acute clinical scenarios. In the first scenario, resolution of the
inflammation is followed by complete recovery associated with
improved heart function. It has been reported that myocarditis
resolves spontaneously in ∼40–60% of cases (11, 12). In the
second scenario, the acute phase is followed by development
of stable dilated cardiomyopathy (DCM). Follow-up clinical
studies showed development of DCM pathology over a period
of several years in 14–52% patients with histologically proven
myocarditis (12). DCM is referred to as left ventricular dilation
associated with systolic dysfunction in the absence of coronary
artery disease. Histologically, DCM ismanifested by the extensive
replacement of cardiac muscle cells with fibrotic tissue and
deposition of collagen (13, 14). DCM patients develop not only
heart pump weakening, but also heart valve problems, blood
clots, and arrhythmias leading to heart and secondary organ
failures. DCM patients show transplantation-free survival at the
rate of 50–60% over 5 years in children (15) and in adults (7,
16, 17), however improved medication can increase the survival
rate up to 80% (16). Particularly high mortality has been reported
for patients with DCM due to Chagas disease (17). DCM can be
associated with inflammation of themyocardium. Co-occurrence
of myocarditis and DCM is referred to as inflammatory DCM
(iDCM) (6). In fact, 16–30% of patients with chronic DCM show
immunohistochemical evidences of myocardial inflammation
(15, 18). Cardiac deaths in the follow-up myocarditis cohort were
predominantly associated with DCM characteristic including
systolic dysfunction and left ventricular dilation (9). Accordingly,
ventricular dilatation and systolic dysfunction are associated with
worse prognosis for myocarditis patients (8).

Disease Etiology
In Europe and North America myocarditis is often idiopathic.
Infections with cardiotropic enteroviruses such as coxsackievirus
B3 (CVB3) have been associated with the disease and considered
as a causative agent. The prevalence of enteroviruses detected
in cardiac biopsies of myocarditis patients was reported at

the rate of 14–57% (19). Other viruses such as parvovirus
B19, adenoviruses or herpesviruses have also been detected in
biopsies of myocarditis patients (19). Over decades, a shift in
detection of enterovirus and adenovirus to parvovirus B19 and
herpesviruses has been observed. However, the causative role
of detected viruses in myocarditis patients is not evident. For
example, surprisingly high prevalence of parvovirus B19 has
been detected in myocarditis patients, suggesting its pathogenic
role in the disease (20). More recent data showed, however, a
high prevalence of parvovirus B19 also in myocarditis-negative
hearts (21). Thus, the causative or associative role of individual
viral infections in pathogenesis of myocarditis is still under
investigation. Furthermore, it also remains to be elucidated,
whether the persistence of the viral genome in the myocardium
influences the clinical outcomes. So far, clinical studies resulted
rather in contradicting conclusions (8, 22). In Europe and North
America, myocarditis is also diagnosed in patients with Lyme
disease (borreliosis). The disease is caused by bacteria Borrelia
burgdorferi, which is transmitted by the bite of an infected ticks.
It is estimated that up to 10% of Lyme disease patients develop
myocarditis (23).

In Latin America, infections with protozoan Trypanosoma
cruzi (Chagas disease) are the most common cause of
inflammatory heart disease (24). The etiology of Chagas disease is
quite well-established. Bites of blood-sucking triatomines (called
also kissing bugs) spread the infective forms of the parasite. In
humans, trypanosomal infection triggers the disease with two
clinically distinct phases. The acute phase lasts several weeks and
is usually asymptomatic or is associated with fever and local
swelling or skin lesion. 10–30 years later about one third of
the infected individuals develop a chronic form of the disease
primarily manifested by DCM or iDCM, but also by neurological
and/or gastrointestinal track pathologies. The chronic phase of
the Chagas disease is usually progressive, leading to permanent
heart failure (25). Cardiac dysfunction due to myocarditis and
iDCM represents the most frequent and the most severe clinical
manifestation of Chagas disease, which is associated with poor
prognosis and high mortality rates (24, 26).

Non-infectious causes of myocarditis include mainly systemic
autoimmune diseases and certain medications (27). Myocarditis
has been observed for example in systemic lupus erythematosus
(28) and in myasthenia gravis (29) patients. Recently, numerous
cases of fatal myocarditis have been reported in cancer
patients shortly after starting treatment with immune checkpoint
inhibitors (30, 31). Immune checkpoint inhibitors refer to a
category of drugs (antibodies) targeting negative regulators of
T cell response, such as cytotoxic T-lymphocyte associated
protein-4 (CTLA-4), programmed cell death protein-1 (PD-
1), and PD-1 ligand (PD-L1). It is considered that immune
checkpoint inhibitors may activate heart-specific autoimmunity
in predisposed individuals (32). Today, it is widely accepted
that autoimmune mechanisms are involved in the development
and/or progression of myocarditis (33). Clinical evidences
suggest active autoimmune response in human myocarditis
on both, cellular and humoral levels. Initially, the concept
of heart-specific autoimmunity came from the observation of
high titers of heart-specific autoantibodies in CVB3 infected
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individuals. Accordingly, 30% of patients with myocarditis and
DCM develop high titers of heart-specific autoantibodies (34).
Cardiac myosin heavy chain (MyHC) has been identified as the
most prominent autoantigen for circulating heart autoantibodies
in myocarditis and cardiomyopathy patients (35). In fact, the
presence of anti-MyHC autoantibodies has been associated with
worse left ventricular systolic function and diastolic stiffness
in patients with chronic myocarditis (36). There are strong
indications that also antigen-presenting cells play an important
role in the pathogenesis of myocarditis in humans by promoting
autoimmune mechanisms. For example, histological analysis
demonstrated increased levels of major histocompatibility
complex (MHC) class I and II, known as human leukocyte
antigen (HLA) complexes (37) and co-stimulatory molecules
B7-1, B7-2, and CD40 (38) in hearts of myocarditis patients.
More recent data pointed also to the importance of the humoral
response in myocarditis (39).

Clinical Assessment and Classifications
of Myocarditis
Diagnosis of Myocarditis
Clinical manifestation of myocarditis varies with a broad
spectrum of symptoms, ranging from asymptomatic courses
through shortness of breath, cardiac arrhythmias to chest pain
resembling myocardial infarction (27, 40, 41). Myocarditis
is often associated with left ventricular dysfunction (42),
in some cases with cardiac arrhythmias (43) and elevated
levels of certain biomarkers (6). These clinical symptoms
are, however, not specific for myocarditis and the definitive
diagnosis requires detection of inflammatory cells in the
myocardium, typically on endomyocardial biopsy. In addition
to histological analyses of cardiac biopsies, the assessment
of myocarditis could be performed using a cardiac magnetic
resonance imaging (44, 45). Improved imaging protocols
confirmed usefulness of this modern, non-invasive technology
in diagnosing myocarditis (46). Magnetic resonance imaging
shows excellent diagnostic accuracy in patients with acute
symptoms, while its usefulness is limited in patients with

suspected chronic myocarditis (45, 47). On the one hand,
histological evaluation of myocardial biopsies still represents
a “gold standard,” mainly because it allows not only to
diagnose myocarditis, but also to identify infective agents and
characterize the type of inflammatory cells. These data can be
indicative for selection of the personalized treatment strategy
and may be predictive for disease outcome (27, 40, 41, 48).
In fact, endomyocardial biopsies confirm inflammation in 44–
70% of patients with suspected myocarditis (49–51). On the
other hand, due to the often patchy pattern of inflammation
in the heart, endomyocardial biopsies-based diagnosis of
myocarditis yields rather low sensitivity (52–54). Biopsies guided
by non-invasive molecular imaging and/or electroanatomic
mapping could increase the success rate. It seems, however,
that the actual prevalence of myocarditis possibly remains
underestimated. It is noteworthy that, incidental inflammation
of the myocardium evaluated in a clinicopathological study
reported that any inflammatory cells were present in 18% and
multifocal inflammation in 9% of total cardiac and non-cardiac
deaths (55).

Clinical Classifications of Myocarditis
In the clinic, myocarditis can be classified based on the
causative, histological, and clinicopathological criteria, which are
summarized in Table 1. The causative criteria define infectious
agents (virus, protozoa, or bacteria) or non-infectious condition
(autoimmune diseases, medications etc.) associated with
myocarditis. Identification of the infectious agent or potential
non-infectious trigger may be indicative not only for disease
etiology, but also helps to choose the most effective therapeutic
strategy for the affected patients. In addition to identification
of the causative agent, histological and immunohistological
analyses are performed to categorize myocarditis based on the
presence, morphology and type of inflammatory infiltrates in
the myocardium. Lymphocytic myocarditis characterized by
extensive infiltration of lymphocytes and monocytes with signs
of cardiomyocyte necrosis (active lymphocytic myocarditis)
represents the most frequent type of myocarditis (10).
Lymphocyticmyocarditis is often observed inmyocardium tested

TABLE 1 | Clinical classifications of myocarditis.

Causative criteria Histological criteria Clinicopathological criteria

Virus: coxsackievirus B3, adenoviruses or

herpesviruses and other

Active myocarditis: cardiac inflammation

with apparent cardiomyocyte necrosis

Fulminant myocarditis: sudden onset, severe heart failure,

cardiogenic shock or life-threatening arrhythmias

Protozoa: Trypanosoma cruzi (Chagas

disease)

Borderline myocarditis: cardiac

inflammation without evident cardiomyocyte

necrosis

Acute myocarditis: highly variable from asymptomatic to cardiogenic

shock, ventricular dysfunction, may progress to dilated cardiomyopathy

Bacteria: Borrelia burgdorferi (Lyme disease)

and other

Lymphocytic myocarditis: extensive

infiltration of lymphocytes and monocytes

Chronic active myocarditis: variable clinical symptoms, ventricular

dysfunction, relapses of clinical symptoms and chronic myocardial

inflammation on histology

Immune checkpoint inhibitors:

anti-CTLA-4, anti-PD-1 or anti-PD-L1 therapy

Giant cell myocarditis: multinucleated giant

cells and lymphocytes on heart biopsies

Chronic persistent myocarditis: persistent histologic infiltrate with

myocyte necrosis, chest pain or palpitation without ventricular

dysfunction

Systemic autoimmune diseases:

Systemic lupus erythematosus, myasthenia

gravis and other

Eosinophilic myocarditis: eosinophil-rich

infiltrates with extensive myocyte necrosis
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positive for viral persistence. Less common forms of myocarditis
represent giant cell myocarditis and eosinophilic myocarditis.
Giant cell myocarditis is characterized by the presence of
multinucleated giant cells and lymphocytes on heart biopsies.
Presence of giant cells within non-caseating granulomas, usually
associated with myocardial fibrosis is referred to as cardiac
sarcoidosis (56). The characteristic feature of eosinophilic
myocarditis is the presence of eosinophil-rich infiltrates in
the myocardium and extensive myocyte necrosis, which is
accompanied with elevated level of circulating eosinophils
(57). Giant cell myocarditis and eosinophilic myocarditis are
associated with particularly poor prognosis (57–60).

Combination of the histologic data and clinical course
of the disease resulted in clinicopathologic classification of
myocarditis (61). Parameters such as onset of the disease,
initial clinical and histological presentation, disease course and
cardiac dysfunction define acute, fulminant, chronic active and
chronic persistent subtypes of myocarditis. Acute myocarditis
represents the most common type of myocarditis, in which
symptoms last typically for days or weeks and the acute phase
is followed by spontaneous improvement or development
of stable DCM (62). In patients with fulminant myocarditis
disease progresses rapidly resulting in severe heart failure and
cardiogenic shock with mortality rate of 30–40% during the acute
phase (63, 64). Patients diagnosed with fulminant myocarditis
surviving the acute phase have been instead suggested to have
excellent long-term prognosis (65), although a recently published
study demonstrated contradictive findings (66). In its chronic
form, myocarditis is detected over a period of three or more
months. Clinical and histologic relapses and development
of ventricular dysfunction is characteristic for chronic
active myocarditis, whereas chronic persistent myocarditis
is characterized by persistent presence of inflammatory cells
in the myocardium, but it is usually not associated with
ventricular dysfunction.

MOUSE MODELS OF EXPERIMENTAL
MYOCARDITIS

The need to understand cellular and molecular mechanisms of
inflammatory heart diseases led to development of animalmodels
for experimental myocarditis. In general, these models can be
categorized based on the causative agents into two major classes:
infectious and non-infectious. In infectious models, pathogens
associated with myocarditis in humans are used to induce cardiac
inflammation in animals. CVB3 and T. cruzi represent two
classical infectious pathogens used for induction of experimental
myocarditis in mice. In non-infectious models, myocarditis is
typically triggered by an autoimmune response against heart-
specific antigens. A comparative summary of the selected models
is presented in the Table 2.

Viral Models of Experimental Myocarditis
Experimental Myocarditis Induced With CVB3
CVB3 has been implicated to the pathogenesis of myocarditis in
humans and therefore this virus was used to induce experimental

myocarditis in animals. Coxackieviruses belonging to the
Picornaviridae family represent positive-sense single-stranded
RNA enteroviruses. Coxsackieviruses are typically transmitted
by the oral route and for replication require host cells.
Unlike other serotypes, CVB3 efficiently infects and replicates
in cardiomyocytes leading to their death through apoptosis
(181) or necroptosis (182). Effective CVB3 replication has been
demonstrated also in cardiac fibroblasts (183). CVB3 infection
begins by coupling the virus with host-cell coxsackievirus
and adenovirus receptor (CAR), and decay-accelerating factor
(DAF). Additionally, recent data pointed to the relevance
of NOD2 in CVB3 uptake (184). After entering into the
cytoplasm, viral RNA is translated and then transcribed. The viral
genome is further translated into viral structural proteins, which
assemble with the positive-strand RNA viral genome forming
the complete infectious virion (185). Infected cardiomyocytes
become ultimately lysed, which results in release of cytosolic
proteins and virus progeny. Active viral replication as well
as latent viral persistence have been described in hearts of
myocarditis patients (186).

The first successful myocarditis induction in mice using
purified CVB3 (Nancy strain) was reported in 1974 (67). The
Nancy strain of CVB3 is the most commonly used virus to induce
myocarditis in mice until today. The virus was passaged in vitro
in the host cells. Inoculation of purified, in vitro-passaged CVB3
resulted in high viral replication in hearts of host mice. This
model is characterized by substantial cardiomyocyte necrosis,
moderate inflammation, pancreatitis, and often high mortality
during the acute phase of disease in BALB/c, A/J, and C57BL/6
mice (67–74). Poor survival rate of mice infected with in vitro-
passaged CVB3 led to development of the heart-passaged CVB3
model of experimental myocarditis (83). In this model, hearts
of mice infected with CVB3 were used for preparation of the
infective pathogen. Such heart-passaged CVB3 containing not
only the virus, but also cardiac myosin is inoculated into host
animals. In this model, viral replication peaks around day 7
and the pathogen is cleared around day 14, post-infection.
Infected mice develop acute myocarditis around day 10–14,
which is characterized by massive infiltration of cardiac tissue
with primarily cells of myeloid lineage accompanied by T
(mainly CD4+) and some B lymphocytes in various mouse
strains including BALB/c, A/J, ABY/SnJ, and C57BL/6 (83–89).
In this model myocarditis is associated with left ventricular
dysfunction during the acute phase. In contrast to high mortality
rate observed in in vitro-passaged CVB3 model, typically all mice
infected with heart-passaged CVB3 survive.

Following the acute myocarditis phase, disease course strongly
depends on the genetic background of infected mice. Susceptible
BALB/c, ABY/SnJ, and A/J mice progress to a phenotype of
iDCM, characterized by chronicmyocarditis, myocardial fibrosis,
and cardiomyopathy, which is observed at day 28 post-infection
and later (83, 89, 90). Whereas, mice with C57BL/6 genetic
background do not develop DCM/iDCM phenotype (83, 91,
92), unless they are additionally treated with lipopolysaccharide
(LPS) (93, 94). Infection with CVB3 leads to impaired cardiac
functionality at later stages, which develops independently of the
fibrotic phenotype in the heart (92, 94).
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TABLE 2 | Characteristics of commonly used mouse models of experimental myocarditis.

Mouse model Susceptible

mouse strains

Histological

characteristic

Clinicopathological

characteristic

Advantages and limitations References

In vitro-passaged

CVB3 or EMCV

(103-105 TCID50

or PFU)

BALB/c, A/J,

DBA-2, C57BL/6

(4-9 weeks old)

Active myocarditis Acute myocarditis (+) use of clinically relevant virus

(+) suitable to study CVB3 replication

(–) high mortality

(–) high biosafety standards required

(67–82)

Heart-passaged

CVB3 (103-5x105

PFU)

BALB/c, A/J,

C57BL/6 (4-9

weeks old)

Active lymphocytic

myocarditis,

fibrosis

Acute myocarditis

(C57BL/6) and chronic

active myocarditis (BALB/c,

A/J)

(+) use of clinically relevant virus

(+) allows to study disease progression

(–) involvement of immune system in CVB3

clearance and autoimmunity

(–) high biosafety standards required

(83–94)

Reovirus or MAV-1

(104-107 PFU)

BALB/c, C57BL/6,

Swiss (2-7 days

old)

Active myocarditis Acute myocarditis (+) suitable to study viral replication

(+) unique model of pediatric myocarditis

(–) clinically irrelevant viruses

(–) non-standard methodologies required

(95–98)

T. cruzi infection

(50 – 106

trypomastigotes)

BALB/c, A/J,

C57BL/6, DBA-2,

C3H/He, Swiss

(4-12 weeks old)

Active lymphocytic

myocarditis,

fibrosis

Chronic active myocarditis (+) use of clinically relevant pathogen

(+) recapitulate course of Chagas disease

(–) pathogen strain-dependent variability

(–) long-term model

(99–133)

Immunization with

α-MyHC or

troponin I peptide

and CFA

BALB/c, A/J,

A.SW (6-8 weeks

old)

Active/borderline

lymphocytic or

eosinophilic*

myocarditis,

fibrosis

Acute myocarditis

progressing to DCM

(+) biosafe

(+) suitable to study transition from

myocarditis to DCM

(–) non-physiological disease induction

(–) immunization with CFA

(134–163)

Delivery of bmDCs

loaded with

α-MyHC peptide

BALB/c (6-8

weeks old)

Borderline

lymphocytic

myocarditis

Acute myocarditis (+) biosafe

(+) suitable to study dendritic cells

(–) non-physiological disease induction

(–) culture of bmDCs in FCS-rich medium

(145, 164, 165)

TCR-M transgenic

mice

BALB/c (≥4

weeks old)

Active/borderline

lymphocytic

myocarditis

Chronic persistent

myocarditis

(+) biosafe

(+) suitable to study pathophysiology of

heart-specific T cells

(–) non-physiological disease induction

(–) lack of heart non-specific T cells

(166)

CMy-mOVA mice

injected with OT-I

CD8+ effector T

cells (2.5 × 104-3

× 106)

C57BL/6 (6-20

weeks old)

Active lymphocytic

myocarditis

Fulminant myocarditis (+) biosafe

(+) suitable to study T cell-mediated

cytotoxicity against cardiomyocytes

(–) reactivity against non-cardiac antigen

(–) in vitro T cell activation

(167–170)

PD-1/PD-L1-

deficiency

BALB/c, MRL (≥4

weeks old)

Active/borderline

lymphocytic

myocarditis

Fulminant myocarditis (+) biosafe

(+) suitable to study side effects of

anti-PD-1/PD-1L therapy

(–) multiorgan involvement

(–) high mortality

(171–175)

HLA-DQ8

transgenic mice

BALB/c, NOD (≥4

weeks old)

Active/borderline

lymphocytic

myocarditis

Fulminant myocarditis (+) biosafe

(+) suitable to study cardiac antigen

presentation

(–) human-mouse chimeric system

(–) high mortality

(176–180)

α-MyHC, myosin heavy chain α; bmDCs, bone marrow-derived dendritic cells; CFA, complete Freund’s adjuvant; CMy-mOVA - cardiac myocyte restricted membrane-bound ovalbumin;

CVB3, coxsackievirus B3; EMCV, encephalomyocarditis virus; FCS, fetal calf serum; HLA, human leukocyte antigen; MAV-1, murine adenovirus type 1; OT-I, major histocompatibility

complex class I-restricted ovalbumin-specific; PD-1, programmed cell death protein-1; PD-L1, PD-1 ligand; PFU, plaque forming unit; TCID50, 50% tissue culture infectious dose;

TCR-M, T cell receptor (TCR) specific to α-MyHC. * in Ifng−/− Il17a−/− BALB/c mice.

Infection with CVB3 triggers the respective innate and
adaptive immune responses. Synthesis of antiviral cytokines
such as type I interferons (IFNs) represent the first line of
the innate immune defense against CVB3 infection, which
aims to inhibit viral replication. Accordingly, treatments
with IFN-α or IFN-β were reported to effectively eliminate
virus in CVB3 infected mice (75) as well as in myocarditis

patients (187). Following CVB3 entry into the target cell,
the virus can engage intracellular nucleotide binding and
oligomerization domain (NOD)-like receptors (NLRs) and
activate certain Toll-like receptors (TLRs) (188). Activation
of TRIF-dependent TLR3 has been recognized to be crucial
for antiviral type I IFN production (76, 77). Interestingly,
activation of other NLR and TLR pathways exacerbate
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myocarditis in CVB3 infected mice through negative
regulation of type I IFN and stimulation of proinflammatory
cytokines (73, 74, 184).

The innate immune response is usually followed by the
adaptive response against the infective virus. In CVB3-mediated
experimental myocarditis, the protective role of the adaptive
immune response has been well-established. Studies using
immunodeficient mice showed that lack of T and B cells led
to viral persistence and enhanced myocarditis upon CVB3
infection (189, 190). Interestingly, in the CVB3 myocarditis
model CD4+, but not CD8+ T cells play a pivotal role in
viral clearance and thus protect infected mice from persistent
cardiac inflammation (191, 192), whilst CD8+ T cells have
been implicated mainly in the autoimmune response (191,
193). These paradoxical observations can be explained by the
findings that CD4+ T cell response recognizes infected, but not
uninfected myocytes, while CD8+ effector T cells react only
to uninfected myocytes through recognition of cardiac myosin
(193). Furthermore, natural killer (NK) (78) and NK T cells
(79, 80) were also reported to play protective roles in CVB3-
induced myocarditis.

As stated above, heart-specific autoimmunity has been
implicated in the pathogenesis of viral myocarditis. Early data
indeed pointed to the development of functional heart-specific
autoimmune response in CVB3 infected mice (81). Detection
of circulating autoantibodies represents a basic diagnostic
assay indicating ongoing autoimmune disorder. Following
CVB3 infection, high titers of heart-specific autoantibodies
have been detected in host A/J and BALB/c mice (194,
195). Heart-specific autoantibodies are commonly detected also
in myocarditis patients (196) pointing to similarity between
mouse models and clinical scenario. Infection with CVB3
activates also cardiac myosin reactive CD4+ T cells in mice
(69). Data from experimental model provided evidences that
cardiac myosin reactive cells functionally contribute to cardiac
pathology during chronic stage of the disease in CVB3 infected
BALB/c mice (197). Heart specific autoimmunity seems to
be a consequence of significant release of cardiac peptides
from cardiomyocytes lysed during cardiotropic infection or
molecular mimicry (epitope cross-reactivity) between the virus
and cardiac proteins. Cardiac autoantigens in the presence of
certain co-stimulatory, so called “third signal” cytokines can
trigger the effector response of autoreactive T lymphocytes.
It has been suggested that proinflammatory cytokines, mainly
TNFα and IL-1β, produced during the innate response against
viral infection play critical role in induction of the effector
autoimmune response (33). Thus, myocarditis is likely a result
of not only immune response against the infective virus, but also
a consequence of boosted heart-specific autoimmune response.
It seems that viral infection primary triggers myocarditis, while
autoimmune response contributes to disease progression. In
summary, myocarditis and iDCM phenotypes following CVB3
infection is the result of interplay between immune responses
against the virus and heart-specific autoimmunity. Published
data indicate that CVB3 infectious myocarditis mouse models
accurately recapitulate principles of the immune responses
in humans.

Experimental Myocarditis Induced With Other Viruses
CVB3 represents the most common, but not the only virus
used for induction of experimental myocarditis in mice. Cardiac
inflammation associated with cardiomyocyte necrosis can be also
induced with encephalomyocarditis virus (EMCV) (82). EMCV,
like CVB3, are positive single-stranded RNA viruses belonging
to the Picornaviridae family, which induce necrotic myocarditis
with the similar mechanism of action (198). Enteroviruses CVB3
and EMVC are used to induce myocarditis in ≥4 weeks old
mice. Whereas, the murine adenovirus type 1 (MAV-1) and
reovirus 8B have been used to establish the mouse model
for pediatric myocarditis. Depending on the delivery route,
MAV-1 induces lethal [intraperitoneal injection (95)] or non-
lethal [intranasal infection (96)] myocarditis in newborn mice.
Infection of newborn mice with reovirus 8B also induces acute
viral myocarditis. In this model myocarditis is characterized by
marked cardiomyocyte necrosis and mild inflammation leading
to death of infected BALB/c (97), but not C57BL/6 (98) mice.
In contrast to the CVB3 model, autoimmunity seems not to be
involved in myocarditis progression in reovirus 8B infected mice
(97). Myocarditis in children is a deadly disease, particularly for
newborns and infants and viral infections have been suggested
as important causative agents in these young patients (199,
200). In that respect, MAV-1 and reovirus B8 models could be
useful to study pathophysiological mechanisms of the disease
in children.

Experimental Models of Chagas Heart
Disease
Trypanosomal infection can cause myocarditis and iDCM in
mouse organisms. Experimental Chagas heart disease has been
successfully established in a number of mouse lines using various
T. cruzi strains including Colombian, Tulahuen, CL Brener
Brazil, the Y, and SylvioX10, but so far, no model has been
generally accepted as the classical one. Pathogenic trypanosome
strains were isolated from Chagastic patients, insect vectors, and
animal reservoir (99). Trypanosoma cruzi is typically passaged
in mice and bloodstream trypomastigotes (infective form of the
parasite) are transferred into experimental animals by different
delivery routes including intraperitoneal, intradermal, and oral
transmission. Inbred strains BALB/c, C57BL/6, A/J, DBA-2, or
C3H/He are often used as hosts, however many laboratories use
outbred Swiss mice to induce experimental Chagas heart disease.
Disease course, organ involvement and survival rate in different
models are characterized by high variability and strongly depend
on the T. cruzi strain, delivery route and genetic background of
the recipient mice (99–105). An example of the high variability
in mouse Chagastic model was demonstrated in the experiment
with Swiss mice infected with different clones of the Colombian
strain, which showed mouse mortality ranging from 0 to 100%
depending on the clone (102). Apparently, interplay between
the host, parasite genetics and environmental factors ultimately
determine the outcome of a mouse infection with T. cruzi.
Trypanosomal infection may lead to myocarditis development
in recipient mice within 1–3 weeks post-infection (101, 102). In
the chronic form, experimental Chagas heart disease is associated
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with progressive inflammation, iDCM phenotype and heart
dysfunction. This phenotype is observed several months post-
infection (100, 104, 106–110). It seems that chronic models
recapitulate not only the end stage heart phenotype, but also the
course of the disease observed in Chagastic patients.

During the acute phase of Chagas disease, trypomastigotes
spread with the bloodstream throughout the body and enter
into target cells, in which they differentiate into amastigotes
and multiply causing death of the host cells. Infection of
myeloid cells and cardiomyocytes represent two important
check points for the progression of the disease. Myeloid
cells, like macrophages and dendritic cells actively internalize
parasites by phagocytosis. The innate immune response of
macrophages and dendritic cells represent the first line of
defense against the parasite involving TLR-dependent and
TLR-independent mechanisms. Trypomastigote cell surface
membrane glycosylphosphatidylinositol-anchored mucin-like
glycoproteins and glycoinositolphospholipids as well as secreted
Tc52 proteins activate innate immune cells through TLR2-
, TLR4-, and TLR9-dependent mechanisms (111–113). The
classical TLR-dependent response activates NF-κb and MAPK
pathways leading to production of proinflammatory cytokines
including TNFα and Th1 polarizing IL-12. Such responses
are indeed observed during trypanosomal infections in mice
(114, 115). Furthermore, in response to IFN-γ (produced
by Th1 cells, but also by activated NK cells) and TNFα
macrophages produce nitric oxide. This short-lived free radical
effectively suppresses parasite replication and represents the
primary defense mechanism during the acute phase of the
infection (116). During the acute trypanosomal infection, Th1
polarization is facilitated also through TLR-independent innate
mechanisms. For example, a cysteine protease cruzipain released
by trypomastigote generates short-lived kinins, which stimulate
IL-12 production through the bradykinin B2 receptor on the host
cells and subsequently induce the protective Th1 response in
infected mice (117).

Furthermore, T. cruzi triggers a robust adaptive immune
response in the infected mouse organism. Phenotypically,
infected mice show accumulation of lymphocytes in the
spleen and subcutaneous lymph nodes associated with
thymus atrophy (118). Early reports demonstrated persistent,
non-specific polyclonal activation of T and B cells with
phenotypic hypergammaglobulinemia (119, 120). Indeed,
T. cruzi components such as DNA or glycoproteins have
been shown to non-specifically activate T and B cells
(121, 122), whereas more recent data pointed to the key
role of antigen-specific response during parasite infection
in mouse and in human (123, 124, 201). Importantly,
the adaptive immune response plays a crucial role in
pathogen clearance. Depletion of CD4+ or CD8+ T cells
leads to an increase in parasite burden and exacerbation of
myocarditis (125). Similarly, B cells and trypanosoma-specific
antibodies have been shown to protect infected mice from
uncontrolled parasite replication (126–128). Furthermore,
interplay between T and B cells is needed for the effective
adaptive immune response against trypanosomal infection
(127, 128).

During the acute phase of the disease, the immune response
eventually eliminates most of the infective pathogens, but not all.
It has been suggested that a certain degree of parasite persistence,
particularly in cardiac tissue correlates with the development of
DCM phenotype and heart failure. Trypanosomal reactivation
is commonly observed under immunosuppressive conditions
in mouse models (129) and in humans (202) supporting the
concept of parasite persistence. In the clinical scenario, Chagastic
patients are treated with one of two anti-parasitic medications,
benznidazole or nifurtimox, which generate free radicals, killing
T. cruzi pathogens. In the chronic model of experimental Chagas
heart disease, elimination of the pathogen during post-acute
phase with benznidazole was shown to prevent development
of severe chronic DCM in infected mice (110, 130). These
results indicate that chronic experimental model can recapitulate
incomplete eradication of T. cruzi observed in Chagastic patients.
It is important to note that effectiveness of the anti-parasitic
treatment decreases as the disease progresses. Ultimately,
treatment with benznidazole fails to improve cardiac clinical
outcomes in Chagastic patients with established DCM (203).

Heart-specific autoimmunity has been suggested as another
disease progressing factor in Chagas heart disease. Heart-
specific T cells and high titers of heart-specific autoantibodies
have been identified in experimental mouse models (131, 204)
as well as in Chagastic patients (205). In T. cruzi infected
mice, development of heart-specific autoimmunity is associated
with the genetic background of the host organism. Prominent
humoral and cellular anti-cardiac myosin responses develop in
A/J and BALB/c, but not in C57BL/6 mice (132, 206). Such
an anti-cardiac myosin autoimmune response was shown to be
non-essential for development of the acute phase of myocarditis
(133), but has been implicated in the progression of post-acute
cardiomyopathy during chronic phase of experimental Chagas
heart disease (132). In mouse model of Chagas disease, the
adaptive immune response, which plays a crucial role in the host
defense against the infecting parasite, seems to contribute also to
disease progression.

Mouse Models of Experimental
Autoimmune Myocarditis
As presented above, clinical observations and experimental
data from infectious models provide strong evidences for
involvement of autoimmune mechanisms in the development
and progression of myocarditis. In infectious models, T and B
cells are primary involved in pathogen clearance. It is therefore
practically impossible to uncouple the defense from autoimmune
mechanisms using commonly available technologies. The
need to understand contribution and molecular mechanisms
of autoimmunity led to development of rodent models of
experimental autoimmune myocarditis (EAM), in which
myocarditis is induced by heart-reactive T cells in the absence of
infectious pathogen.

In the context of autoimmune myocarditis, the question
arises whether or not heart-specific T cells naturally occur in
mouse and in human. In principle, vertebrates are protected
from autoreactive T cells by the immune tolerance mechanisms.
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In the thymus, central tolerance specifically eliminates newly
developing T cells, recognizing body’s own antigens in a process
called “negative selection.” In this process presentation of self-
antigens by antigen-presenting medullary cells is essential for
maintenance of a central tolerance. Surprisingly, α-isoform
of MyHC (α-MyHC), unlike other cardiac proteins, is not
expressed in cells implicated in T cell tolerance. This results in
undisturbed development of α-MyHC-specific T cells and leads
to their physiological presence in the periphery in mice and
in human (207). Thus, α-MyHC represents the major cardiac
self-antigen. In fact, many currently used EAM models take
advantage of this and activate naturally existing α-MyHC-specific
T cells in order to trigger autoimmune-mediated myocarditis.
Data from experimental animal models clearly demonstrated
that autoreactive CD4+ T lymphocytes were able to trigger
myocarditis and DCM.

The “Classical” Model of Experimental Autoimmune

Myocarditis
The first attempt to induce heart-specific autoimmunity in
animals was reported in 1958 (208), but in 1987 Neu et al.
published the basis for the currently most commonly used
mouse model of EAM (134). In this publication, authors
demonstrated that delivery of cardiac myosin together with the
complete Freund’s adjuvant (CFA) inducedmyocarditis with high
prevalence and high titers of myosin autoantibodies in genetically
predisposed mice (134). Currently, in this “classical” model of
EAM susceptible mice are immunized with α-MyHC peptide
together with CFA at day 0 and 7. Myocarditis in α-MyHC/CFA
immunized mice is characterized by massive infiltration of
mainly myeloid cells together with CD4+ T cells and few B
and CD8+ T lymphocytes. Inflammation of cardiac tissue occurs
typically 14–21 days after the first immunization. Resolution of
the inflammation is followed by the progressive accumulation
of fibrotic tissue in the myocardium, ventricular dilatation and
impaired heart function in some mice (135–146). Thus, this
model allows to study not only autoimmune mechanisms, but
also transition from myocarditis to DCM phenotype. Of note,
α-MyHC/CFA immunization of Ifng−/−Il17a−/− mice results
in myocarditis with extensive infiltration of eosinophils in
the myocardium representing a unique model of eosinophilic
myocarditis (147).

Published data point to a central role of CD4+ T cells in
the α-MyHC/CFA model. Depletion of CD4+ T cells prevents
induction of myocarditis and the adoptive transfer of purified
CD4+ T cells from immunized mice successfully transfers the
disease into immunodeficient hosts (148, 149). A simple passive
transfer of high-titer myosin autoantibodies failed to transfer
myocarditis in the recipient mice (150), however monoclonal
anti-myosin antibodies were shown to induce myocarditis in a
predisposedmouse strain (151). CD8+ T cells, instead, contribute
mainly to myocarditis severity, but are not essential for disease
induction (148). However, recent data showed that using the
specific α-MyHC peptide for EAM induction, CD8+ T cells were
able to limited extends convey myocarditis (152).

Co-delivery of a strong adjuvant, such as CFA represents the
second key element of EAM induction in the “classical” model.

CFA contains heat-killedMycobacterium tuberculosis, which can
activate TLR2, TLR4, and TLR9 on host cells (209). Activation
of TLRs on the innate immune cells triggers secretion of a broad
range of cytokines. In the adaptive immune response, the “third
signal” cytokines produced by dendritic cells program vitality and
expansion potential of antigen-activated T lymphocytes (210).
The “third signal” cytokines have been also shown to polarize
differentiating T cells toward Th1, Th2, or Th17 lineages. The
importance of the “third signal” cytokines in the development
of EAM has been demonstrated in a number of studies. Genetic
deletion or blockage of the “third signal” cytokine signaling,
including TNF-α (153, 154), GM-CSF (155), IL-1 (156), IL-
6 (157), or IL-23 (158) resulted in complete resistance or
amelioration of EAM. It remains, however, unclear whether the
acute response to adjuvant in mice reflects immune processes
during myocarditis induction in humans.

Development of EAM is a multifactorial process, which
depends not only on the presence of heart-specific T cells and
TLR activation, but also strongly on genetic predisposition. α-
MyHC/CFA immunization induces myocarditis in susceptible
strains only. Mice on BALB/c, A/J or A.SW background are
susceptible to EAM, while mice on C57BL/6 background are
resistant (134, 159–161). From a practical point of view, the
resistance to EAM of widely-used C57BL/6 strain limits use of
numerous transgenic models without the need for back-crossing
onto the susceptible background. Differences inMHC haplotypes
(H-2) of susceptible and resistant strains have been suggested to
determine susceptibility of mice to EAM (148, 162). However,
differences in susceptibility of A.SW and B10.S mice, which share
the same H-2 genes, pointed also to the importance of non-H-2
genes in EAM development (163). Summarizing, the “classical”
EAM model offers a well-established, simple and safe method
to study heart-specific autoimmunity and progression of cardiac
inflammation to DCM phenotype, but is limited to few inbred
strains only.

Other Models of Experimental Autoimmune

Myocarditis
The idea that activation of self-antigen presenting cells is critical
for myocarditis induction led to development of “dendritic
cell” EAM model. It has been demonstrated that myocarditis
could be effectively induced by adoptive transfer of bone
marrow-derived dendritic cells (bmDCs) loaded with α-MyHC
peptide and activated with LPS - a major component of the
outer membrane of Gram-negative bacteria and the anti-CD40
antibody. In the “dendritic cell” EAM model, adoptive transfer
of activated α-MyHC-loaded bmDCs at days 0, 3 and 5 results
in acute myocarditis at days 8–12 (145, 164, 165). In contrast
to the “classical” model, mice receiving α-MyHC-loaded bmDCs
develop moderate fibrosis on the follow up. However, additional
administration of CFA significantly accelerates fibrosis and
induces ventricular dilatation and heart dysfunction in this
model (211).

The “classical” and the “dendritic cell” EAM models, both
rely on activation of naturally existing α-MyHC-reactive CD4+

T cells. Non-transgenic mice contain physiologically very low
prevalence of α-MyHC-reactive T cells and TLRs stimulation
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with CFA or LPS is needed not only for polarization, but
also for expansion of activated α-MyHC-reactive T helper
cells. High prevalence of these autoreactive cells can be
alternatively obtained by transgenic overexpression of T cell
receptor (TCR) specific to α-MyHC (TCR-M). A consequence
of the high number of circulating α-MyHC-reactive T cells
in the TCR-M transgenic mice is spontaneous development
of progressive myocarditis associated with ventricular wall
thickening, but without evident systolic dysfunction (166).
The TCR-M transgenic model is particularly useful to study
pathogenesis of autoreactive T cells in the absence of exogenous
TLR agonists.

In contrast to widely studied CD4+ T cells, the role of
CD8+ T cells (known also as cytotoxic T lymphocytes) in heart-
specific autoimmunity is less understood. Unlike CD4+ T cells,
CD8+ T cells recognize antigens presented by MHC class I
molecules and directly induce apoptosis of antigen presenting
cells by secreting cytotoxins, such as perforins and granzymes.
In order to develop CD8+ T cell-dependent myocarditis model,
transgenic mice (on C57BL/6 genetic background) expressing
cardiomyocyte-restricted membrane-bound ovalbumin (OVA)
were injected with in vitro expanded and polarized MHC class
I-restricted, OVA-specific OT-I CD8+ T cells. Adoptive transfer
of high doses (≥5 × 105) of effector OT-I CD8+ T cells caused
massive cardiomyocyte cell death associated with lymphocytic
(both CD4+ and CD8+) and myeloid cell infiltration. Severe
myocarditis caused death of affected mice 3–7 days post T cell
transfer (167, 168). In this model, T cell polarizing factors, such
as IL-12 (167) and T-bet (169) played a key role in disease
pathogenesis. Disease severity in this model correlates with the
number of injected lymphocytes. In contrast to high doses,
low doses (2.5 × 104) of effector OT-I CD8+ T cells induce a
transient and moderate myocarditis only (170). This model is
particularly useful to study CD8+ T cell-mediated cytotoxicity
against cardiomyocytes. Reactivity against non-physiological
antigen (OVA) seems to be, however, a major drawback of
this method.

Under homeostatic conditions, effector functions of CD4+

and CD8+ T cells are controlled by regulatory T cells (Treg).
Accordingly, adoptive transfer of Treg-depleted T cells
induces multiorgan inflammation including fatal autoimmune
myocarditis and high-titer anti-myosin autoantibodies in
the recipient mice. Of note, inflamed myocardium displayed
multinucleated inflammatory cells resembling giant cell
myocarditis in humans (212).

Once T cells become activated, more regulatory mechanisms
control their expansion and effector function. Immune
checkpoint regulators, such as PD-1 represents an example of
regulatory mechanisms. Mechanistically, PD-1-PD-1L signaling
inhibits TCR signaling on activated T cells and thus suppresses
autoimmune response. Accordingly, mice deficient of PD-1
or PD-1L spontaneously develop systemic or organ-specific
inflammations. Progressive myocarditis, iDCM phenotype
and heart failures have been described in PD-1- and PD-1L-
deficient mice on BALB/c (171, 172) and MRL (173, 174) genetic
backgrounds, although for BALB/c not in all housing conditions
(175). In mice lacking PD-1, fatal myocarditis caused high

mortality in particular on MRL genetic background. Cardiac
inflammation in PD-1-deficient mice is entirely dependent on
the adaptive immunity (autoimmunity) and could be transferred
by splenocytes (171, 174). In mouse models, PD-1-PD-1L
signaling protects from myocarditis mediated by CD4+ T
(175) and by CD8+ T (170) cells. PD-1 deficiency results in
myocarditis also in aged C57BL/6 mice, but these mice are
characterized by multiorgan inflammation and represent rather
a model of systemic lupus erythematosus (213). It seems that the
use of PD-1- and PD-1L-deficient mice developing progressive
myocarditis represents a suitable model to study mechanisms of
cardiac side effects observed during anti-PD-1-PD-1L therapies
in oncological patients.

Although α-MyHC represents a main cardioimmunogenic
antigen, other cardiac proteins can also trigger heart-
specific autoimmunity. Immunization of A/J mice with
recombinant cardiac troponin I peptide together with CFA
induces myocarditis, which is followed by myocardial fibrosis,
ventricular dilatation, and impaired systolic function (214).
Unlike α-MyHC, troponin I is expressed in medullary
thymic epithelial cells (207). The occurrence of circulating
troponin I-reactive T cells is, instead, a result of inefficient
elimination of autoreactive T cells during the “negative
selection.” The “leakage” of autoreactive T cells into periphery
is a physiological phenomenon and its degree depends on the
affinity of the TCR to the antigen-presenting medullary cells.
Clinical data show elevated levels of troponin I in around
one third of myocarditis patients (215), but high titers of
anti-troponin I antibodies were detected only in 7% of DCM
patients (216). It seems that troponin I represents rather
a secondary autoantigen in heart-specific autoimmunity in
myocarditis patients.

Presentation of cardiac antigen represent another important
element of autoimmunity. Clinical studies suggested that specific
HLA haplotypes are associated with heart-specific autoimmunity.
This idea was functionally confirmed by introducing specific
HLA complexes into a mouse. Replacement of mouse MHC
class II with the specific HLA-DQ8 in NOD or BALB/c mice
resulted in spontaneous development of myocarditis and iDCM
phenotype (without evident fibrosis), and were associated with
cardiac arrhythmias and high mortality of the transgenic mice
(176–180). This model resembles a course of fatal fulminant
myocarditis in humans. Adoptive transfer experiments pointed
to the key role of CD4+ T cells in pathogenesis of the disease in
this mouse model (178, 179). Interestingly, introduction of HLA-
DR3 or HLA-DQ6 failed to induce cardiac pathology pointing
the specific role of HLA-DQ8 in heart-specific autoimmunity
(177, 178). The HLA-DQ8 transgenic mice seem to be particular
useful to study mechanisms of cardiac antigen presentation and
induction of heart-specific autoimmunity.

A TRIPHASIC MODEL OF MYOCARDITIS

Taking together clinical observations as well as data from animal
models, a triphasic model of myocarditis development and
progression could be proposed (Figure 1). The initial phase
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FIGURE 1 | Schematic presentation of a triphasic model of myocarditis.

is associated with heart injury, caused usually by cardiotropic
infections or non-infectious triggers. Damaged myocardium
induces primary inflammatory response and development of
heart-specific autoimmunity, which results in the development
of myocarditis. In certain cases, myocarditis can be directly
induced by heart-specific autoimmunity. Cardiac inflammation
can be transient or chronic. In the transient form, acute phase of
myocarditis is followed by complete resolution of inflammation
or development of stable DCM. In case of chronic myocarditis,
many patients develop also DCM phenotype (iDCM). Cardiac
dysfunction in DCM and in iDCM is in most cases progressive
leading to end stage organ failure.

WHICH MODEL OF EXPERIMENTAL
MYOCARDITIS TO CHOOSE?

As presented above, a number of different animal models of
myocarditis have been developed. Experimental myocarditis
in mice can be induced with the whole spectrum of disease
triggers ranging from clinically relevant agents, such as infective
pathogens up to artificial models like transgenic animals.
Depending on the model, myocarditis is characterized by
different composition of inflammatory infiltrates and different
extent of necrotic myocardium. In many models, DCM or iDCM
phenotype associated with heart dysfunction represent the end
stage of the disease. The question arises, which model reflects
human myocarditis in the most relevant way. As myocarditis
in humans shows high diversity in terms of causative agents,
autoimmune response, course of inflammation, and progression
to DCM/iDCM, it becomes evident that one animal model
cannot mirror all aspects of the disease in humans.

For modeling of myocarditis with known etiology, as for
example CVB3-mediated myocarditis or Chagas disease, use
of the same infectious agent seems to be the most obvious

choice. Infectious pathogens spread and induce myocarditis
in mice and in humans using similar mechanisms, therefore
these models are particularly useful to study early phase
of disease. However, it is difficult to uncouple immune
mechanisms involved in pathogen clearance and in autoimmune
responses. Furthermore, handling the human infective pathogens
is potentially dangerous for experimentators and requires
exceptionally high biosafety standards.

In contrast, non-infectious models are safe for
experimentators, but induce myocarditis in rather non-
physiologic way. Nevertheless, lack of infectious agents allows to
better study autoimmune mechanisms and involvement of the
immune system to progression of myocarditis to DCM/iDCM
phenotype. Summarizing, the usefulness of the respective mouse
model is mostly limited to certain aspects of the disease in
humans. It is therefore very important to address scientific
question by choosing the relevant model.

ALTERNATIVES FOR ANIMAL STUDIES IN
MYOCARDITIS RESEARCH

In developed countries, public approval to conduct animal
experimentations is today low as never before. Activists raise
ethical concerns and appeal to minimize or even to stop
performing experiments involving animals. Some of these
postulates pointing to protocol optimization and to reduction of
severity in animal experimentation are rational and have been
already implemented in the form of 3R (replacement, reduction,
and refinement) guidelines, but is there a realistic animal-free
alternative in myocarditis research?

It seems that certain aspects of the disease, for example
replication of cardiotropic pathogens, fibroblast-to-
myofibroblast transition, endothelial cell activation, can be
effectively addressed using conventional ex vivo or in vitro
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systems. These systems are suitable for molecular studies,
but rather poorly reflect biomechanical and biochemical
microenvironment of cardiac tissue. Dynamic development of
three-dimensional cell culture methodologies, like organoids
or microtissues represents a recent advancement, which can
address some of these concerns. Furthermore, development of
the human induced pluripotent stem cell (iPSC) technology
represents another important milestone toward animal-free
research. The use of human iPSC-derived cardiomyocytes in
combination with other cell types allows today for a simplistic
modeling of a human heart (217, 218). Furthermore, de
novo tissue fabrication opens new possibilities to integrate
bioscaffolds for improved architecture and microelectronics
for live monitoring of cardiac tissue (219). These advances
offer potentially very attractive replacements for animal models
(220). However, generation of physiologically-relevant human
cardiac tissue faces a number of serious problems, which
include immature state of iPSC-derived cardiomyocytes, limited
availability of non-cardiac primary cells (fibroblasts, endothelial
cells) and high costs of de novo tissue fabrication. Moreover, in
myocarditis active migration of inflammatory cells into the tissue
plays a key role in the disease development. Currently, modeling
of inflammatory response in terms of influx of inflammatory
cells into cardiac tissue in vitro is not available.

Summarizing, it seems that the whole process of myocarditis
is too complex to reproduce it outside of a body by using today’s
technologies. However, certain aspects of the disease can be
reliably studied in vitro and upcoming advances may allow to
reduce animal research in the future.

CONCLUSIVE REMARKS

Animal models represent an important platform in preclinical
research. As presented above, developed models of experimental
myocarditis appear to reliably mirror many specific aspects
of the disease in humans. Currently, these animal models
are commonly used to get an insight into pathophysiology
of myocarditis on molecular and cellular level and to test
pharmaceutic compounds for treatment efficacy and safety.

However, animal studies are commonly unicenter, involving
mostly low group sizes and experiments are rarely reproduced
by others. Furthermore, in some cases, published papers lack
detailed description of used methodologies. Thus, the power of
such exploratory studies is usually low.

In laboratory practice, typical large scale, multicenter
animal studies are not possible due to ethical and economic
reasons. It seems that synthetic research integrating data
from independent studies is needed to increase the power of
experimental findings. In this case, the use of the same or
similar procedures is a basic prerequisite to analyse data from
different laboratories. In the area of experimental myocarditis,
some models show high reproducibility in terms of used
protocols and obtained results. In particularly, published data
by independent laboratories on disease course and severity
of myocarditis induced in specific inbred strains by infection
with CVB3 or by immunization with α-MyHC/CFA show
high consistency. In contrast, other models like experimental
Chagas disease show high variability due to inconsistencies
in methodologies. The use of standardized procedures would
allow to more effectively plan experimentations and more
accurately interpret obtained data. Furthermore, the use of
unified methodologies would be important to effectively
share omics resources and to implement meta-analyses in
animal research. Combined efforts are therefore needed to
more efficiently use the potential of animal models in order
to translate this knowledge into innovative, more effective
treatment therapies.
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