16 research outputs found

    Control of mitogenic and motogenic pathways by miR-198, diminishing hepatoma cell growth and migration

    Get PDF
    Abstract Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths, worldwide. MicroRNAs, inhibiting gene expression by targeting various transcripts, are involved in genomic dysregulation during hepatocellular tumorigenesis. In previous studies, microRNA-198 (miR-198) was shown to be significantly downregulated in HCV-positive hepatocellular carcinoma (HCC). Herein, the function of miR-198 in hepatocellular carcinoma cell growth and gene expression was studied. In hepatoma cell-types with low levels of liver-specific transcription factor HNF1α indicating a low differentiation grade, miR-198 expression was most downregulated. However, miR-198 treatment did not restore the expression of the liver-specific transcription factors HNF1α or HNF4α. Importantly, overexpression of miR-198 in Pop10 hepatoma cells markedly reduced cell growth. In agreement, comprehensive gene expression profiling by microarray hybridisation and real-time quantification revealed that central signal transducers of proliferation pathways were downregulated by miR-198. In contrast, genes mediating cellular adherence were highly upregulated by miR-198. Thus, the low expression of E-cadherin and claudin-1, involved in cell adhesion and cell-cell contacts, was abolished in hepatoma cells after miR-198 overexpression. This definite induction of both proteins by miR-198 was shown to be accompanied by a significantly impaired migration activity of hepatoma Pop10 cells. In conclusion, miR-198 acts as a tumor suppressor by repression of mitogenic and motogenic pathways diminishing cell growth and migration

    Colostral transmission of BTV-8 antibodies from dairy cows six years after vaccination

    No full text
    Bluetongue virus (BTV) antibodies were analysed in 27 Swiss calves born in 2016 at the age of 16–19 days using competitive enzyme-linked-immunosorbent-assay (cELISA) and virus neutralization test (VNT) (animal trial permission number: 75684). Obligatory documentation proved that 15 of 27 dams were BTV-8 vaccinated once or three times in 2008–2010. The offsprings of the non-vaccinated dams were seronegative. Two of three calves and 11 of 12 calves descending from dams who had been vaccinated one or three times, respectively, had BTV specific serum antibodies. As Switzerland is considered BTV-free from 2010 to 2016, it is likely that BTV-8 antibodies were transferred via colostrum. Furthermore, we confirmed neutralizing cross-reactivity of BTV-8 with BTV-4 antibodies as 5 samples positive for BTV-8 were also reactive with BTV-4 antibodies

    Prognostic Value of Homotypic Cell Internalization by Nonprofessional Phagocytic Cancer Cells

    No full text
    Background. In this study, we investigated the prognostic role of homotypic tumor cell cannibalism in different cancer types. Methods. The phenomenon of one cell being internalized into another, which we refer to as “cell-in-cell event,” was assessed in 416 cases from five head and neck cancer cohorts, as well as one anal and one rectal cancer cohort. The samples were processed into tissue microarrays and immunohistochemically stained for E-cadherin and cleaved caspase-3 to visualize cell membranes and apoptotic cell death. Results. Cell-in-cell events were found in all of the cohorts. The frequency ranged from 0.7 to 17.3 cell-in-cell events per mm2. Hardly any apoptotic cells were found within the cell-in-cell structures, although apoptotic cell rates were about 1.6 to two times as high as cell-in-cell rates of the same tissue sample. High numbers of cell-in-cell events showed adverse effects on patients’ survival in the head and neck and in the rectal cancer cohorts. In multivariate analysis, high frequency was an adverse prognostic factor for overall survival in patients with head and neck cancer (). Conclusion. Cell-in-cell events were found to predict patient outcomes in various types of cancer better than apoptosis and proliferation and might therefore be used to guide treatment strategies

    Towards Autonomous Planetary Exploration: The Lightweight Rover Unit (LRU), its Success in the SpaceBotCamp Challenge, and Beyond

    Get PDF
    Planetary exploration poses many challenges for a robot system: From weight and size constraints to extraterrestrial environment conditions, which constrain the suitable sensors and actuators. As the distance to other planets introduces a significant communication delay, the efficient operation of a robot system requires a high level of autonomy. In this work, we present our Lightweight Rover Unit (LRU), a small and agile rover prototype that we designed for the challenges of planetary exploration. Its locomotion system with individually steered wheels allows for high maneuverability in rough terrain and stereo cameras as its main sensors ensure the applicability to space missions. We implemented software components for self-localization in GPS-denied environments, autonomous exploration and mapping as well as computer vision, planning and control modules for the autonomous localization, pickup and assembly of objects with its manipulator. Additional high-level mission control components facilitate both autonomous behavior and remote monitoring of the system state over a delayed communication link. We successfully demonstrated the autonomous capabilities of our LRU at the SpaceBotCamp challenge, a national robotics contest with focus on autonomous planetary exploration. A robot had to autonomously explore an unknown Moon-like rough terrain, locate and collect two objects and assemble them after transport to a third object - which the LRU did on its first try, in half of the time and fully autonomously. The next milestone for our ongoing LRU development is an upcoming planetary exploration analogue mission to perform scientific experiments at a Moon analogue site located on a volcano

    Vesicular Release and Uptake of Circular LSD1-RNAs from Non-Cancer and Cancer Lung Cells

    No full text
    Lysine-specific demethylase 1 (LSD1) is highly expressed in many cancer types and strongly associated with cancer progression and metastasis. Circular RNAs (circRNAs) are produced by back-splicing and influence the interactive RNA network by microRNA and protein sponging. In the present study, we aimedto identify circRNAs that derive from the LSD1-encoding KDM1A gene, and to investigate their potential to be released and uptaken by lung cancer versus non-cancer epithelial cells. We identified four circLSD1-RNAs by RT-PCR with divergent primers, followed by sequencing. The expression level of circLSD1-RNAs was then studied by quantitative PCR on cellular and extracellular fractions of lung cancer (PC9) and non-cancer primary small airway epithelial (PSAE) cells. Moreover, we established the transgenic overexpression of circLSD1-RNAs. We show that circLSD1-RNAs are primarily located in the cytoplasm, but are packaged and released from lung cancer and non-cancer cells by extracellular vesicles (EVs) and ribonucleoprotein (RNP) complexes, respectively. Proteomics demonstrated a different protein pattern of EV fractions released from PC9 versus PSAE cells. Importantly, released circLSD1-RNAs were differently taken up by PSAE and PC9 cells. In conclusion, our findings provide primary evidence that circLSD1-RNAs participate in the intercellular communication of lung cancer cells with the tumor environment
    corecore