7 research outputs found

    Mechanisches Versagen thorakaler und lumbaler Wirbelkörper älterer Menschen - Vorhersage mittels Zwei-Energie Röntgenabsorptiometrie (DXA)

    Get PDF
    Osteoporotische Wirbelkörperfrakturen stellen ein großes sozioökonomisches Gesundheitsproblem dar. Klinisch wird derzeit zur Diagnosestellung der Osteoporose nach WHO-Empfehlung die lumbale DXA-Messung hinzugezogen. Die osteoporotischen Wirbelkörperfrakturen ereignen sich jedoch hauptsächlich in der thorakalen Wirbelsäule und im thorakolumbalen Übergangsbereich. Diese Areale sind jedoch der nicht-invasiven DXA-Messung aufgrund von Überlagerung anderer knöcherner Strukturen nicht zugänglich. In der vorliegenden Studie wurde die Hypothese untersucht, dass die auf der DXA basierende Vorhersage der Versagenslasten in der thorakalen Wirbelsäule durch a) die skelettale Heterogenität zwischen der lumbalen und thorakalen Wirbelsäule und b) durch die Artefakte bei der Bestimmung des lumbalen Knochenmineralgehaltes beeinflusst wird. Hierzu wurden die Korrelationen zwischen den in- und ex-situ erhobenen DXA-Parametern und den Versagenslasten bei älteren Individuen untersucht. Insgesamt wurden die Wirbelsäulen von 119 Präparate (76 Frauen, 82 ± 9 Jahre und 43 Männer, 77 ± 11 Jahre) untersucht. Nach der lumbalen DXA-Messung der Wirbelsäule unter In-situ Bedingungen in anterior-posteriorer (AP) Projektion erfolgte die Ex-situ – Messung in AP und in laterater Projektion. Anschließend wurden in einem axialen Kompressionsversuch, nach der Dreisegment-Methode, die Versagenslasten der Brustwirbelkörpersegmente (BWK) 5–7, 9–11 und dem Lendenwirbelkörpersegment (LWK) 2–4 bestimmt. Der Korrelationskoeffizient zwischen den Versagenslasten der beiden thorakalen Segmente betrug r = 0,85, die Versagenslasten der beiden thorakalen Segmente korrelierte mit dem lumbalen Segment nur moderat (BWK 6 vs. LWK 3 r = 0,61; BWK 10 vs. LWK 3 r = 0,68). Die laterale Ex-situ – DXA-Messung erbrachte signifikant höhere Korrelationen (p < 0,05) mit den Versagenslasten der lumbalen Wirbelsäule als die In-situ – DXA-Messung in AP-Projektion (r = 0,85 vs. 0,71). Die Korrelationen der thorakalen Versagenslasten mit der lateralen Ex-situ – DXA-Messung und der In-situ – DXA-Messung in AP-Projektion waren jedoch gleich (r = 0,69 vs. 0,67 für BWK 10 und r = 0,61 vs. 0,65 für BWK 6). Diese Ergebnisse demonstrieren eine substantielle Heterogenität der mechanischen Kompetenz innerhalb der Wirbelsäule älterer Individuen. Das mechanische Versagen der Lendenwirbelsäule kann am besten aus der lateralen DXA-Messung an explantierten Knochen vorhergesagt werden, somit scheint die lumbale In-situ – AP-Messung einer nicht unbedeutenden Beeinflussung durch die posterioren Element zu unterliegen, die die Vorhersagekraft der Messung reduzieren. Für die Vorhersage der Versagenslasten in der thorakalen Wirbelsäule und den thorakolumbalen Übergangsbereich ist die klinische In-situ – Messung der Lendenwirbelsäule in anterior-posteriorer Projektion der Ex-situ – Messung in beiden Projektionen jedoch nicht unterlegen. Somit scheint die lumbale In-situ – DXA in anterior-posteriorer Projektion ein mechanisch bedingtes Frakturrisiko für die thorakale und lumbale Wirbelsäule in gleicher Weise vorhersagen zu können. Die Artefaktbeeinflussung der lumbalen In-situ – AP-Messung scheint für die Vorhersage eines Frakturrisikos in der thorakalen Wirbelsäule eine eher untergeordnete Rolle zu spielen. Die klinische DXA-Messung der Lendenwirbelsäule in anterior-posteriorer Projektion kann daher als nicht-invasive Methode Aussagen über ein mögliches Frakturrisiko treffen und dazu beitragen Risikopatienten zu diagnostizieren und einer adäquaten, antiresorptiven Therapie zu unterziehen

    Mechanical torque measurement in the proximal femur correlates to failure load and bone mineral density ex vivo

    Get PDF
    Knowledge of local bone quality is essential for surgeons to determine operation techniques. A device for intraoperative measurement of local bone quality has been developed by the AO-Research Foundation (DensiProbe®). We used this device to experimentally measure peak breakaway torque of trabecular bone in the proximal femur and correlated this with local bone mineral density (BMD) and failure load. Bone mineral density of 160 cadaver femurs was measured by ex situ dual-energy X-ray absorptiometry. The failure load of all femurs was analyzed by side-impact analysis. Femur fractures were fixed and mechanical peak torque was measured with the DensiProbe® device. Correlation was calculated whereas correlation coefficient and significance was calculated by Fisher’s Z-transformation. Moreover, linear regression analysis was carried out. The unpaired Student’s t-test was used to assess the significance of differences. The Ward triangle region had the lowest BMD with 0.511 g/cm2 (±0.17 g/cm2), followed by the upper neck region with 0.546 g/cm2 (±0.16 g/cm2), trochanteric region with 0.685 g/cm2 (±0.19 g/cm2) and the femoral neck with 0.813 g/cm2 (±0.2 g/cm2). Peak torque of DensiProbe® in the femoral head was 3.48 Nm (±2.34 Nm). Load to failure was 4050.2 N (±1586.7 N). The highest correlation of peak torque measured by Densi Probe® and load to failure was found in the femoral neck (r=0.64, P<0.001). The overall correlation of mechanical peak torque with T-score was r=0.60 (P<0.001). A correlation was found between mechanical peak torque, load to failure of bone and BMD in vitro. Trabecular strength of bone and bone mineral density are different aspects of bone strength, but a correlation was found between them. Mechanical peak torque as measured may contribute additional information about bone strength, especially in the perioperative testing

    Whole bone testing in small animals: systematic characterization of the mechanical properties of different rodent bones available for rat fracture models

    No full text
    Abstract Objectives Rat fracture models are extensively used to characterize normal and pathological bone healing. Despite, systematic research on inter- and intra-individual differences of common rat bones examined is surprisingly not available. Thus, we studied the biomechanical behaviour and radiological characteristics of the humerus, the tibia and the femur of the male Wistar rat—all of which are potentially available in the experimental situation—to identify useful or detrimental biomechanical properties of each bone and to facilitate sample size calculations. Methods 40 paired femura, tibiae and humeri of male Wistar rats (10–38 weeks, weight between 240 and 720 g) were analysed by DXA, pQCT scan and three-point-bending. Bearing and loading bars of the biomechanical setup were adapted percentually to the bone’s length. Subgroups of light (skeletal immature) rats under 400 g (N = 11, 22 specimens of each bone) and heavy (mature) rats over 400 g (N = 9, 18 specimens of each bone) were formed and evaluated separately. Results Radiologically, neither significant differences between left and right bones, nor a specific side preference was evident. Mean side differences of the BMC were relatively small (1–3% measured by DXA and 2.5–5% by pQCT). Over all, bone mineral content (BMC) assessed by DXA and pQCT (TOT CNT, CORT CNT) showed high correlations between each other (BMC vs. TOT and CORT CNT: R 2 = 0.94–0.99). The load–displacement diagram showed a typical, reproducible curve for each type of bone. Tibiae were the longest bones (mean 41.8 ± 4.12 mm) followed by femurs (mean 38.9 ± 4.12 mm) and humeri (mean 29.88 ± 3.33 mm). Failure loads and stiffness ranged from 175.4 ± 45.23 N / 315.6 ± 63.00 N/mm for the femurs, 124.6 ± 41.13 N / 260.5 ± 59.97 N/mm for the humeri to 117.1 ± 33.94 N / 143.8 ± 36.99 N/mm for the tibiae. Smallest interindividual differences were observed in failure loads of the femurs (CV% 8.6) and tibiae (CV% 10.7) of heavy animals, light animals showed good consistency in failure loads of the humeri (CV% 7.7). Most consistent results of both sides (left vs. right) in failure loads were provided by the femurs of light animals (mean difference 4.0 ± 2.8%); concerning stiffness, humeri of heavy animals were most consistent (mean difference of 6.2 ± 5%). In general, the failure loads showed strong correlations to the BMC (R 2 = 0.85–0.88) whereas stiffness correlated only moderate, except for the humerus (BMC vs. stiffness: R 2 = 0.79). Discussion Altogether, the rat’s femur of mature specimens showed the most accurate and consistent radiological and biomechanical results. In synopsis with the common experimental use enabling comparison among different studies, this bone offers ideal biomechanical conditions for three point bending experiments. This can be explained by the combination of a superior aspect ratio and a round and long, straight morphology, which satisfies the beam criteria more than other bones tested

    Improving results in rat fracture models: enhancing the efficacy of biomechanical testing by a modification of the experimental setup

    No full text
    Abstract Background Animal fracture models, primarily performed in rats, are crucial to investigate normal and pathological bone healing. However, results of biomechanical testing representing a major outcome measure show high standard deviations often precluding statistical significance. Therefore, the aim of our study was a systematical examination of biomechanical characteristics of rat femurs during three-point bending. Furthermore, we tried to reduce variation of results by individually adapting the span of bearing and loading areas to the bone’s length. Methods We examined 40 paired femurs of male Wistar-rats by DXA (BMD and BMC of the whole femur) and pQCT-scans at the levels of bearing and loading areas of the subsequent biomechanical three-point bending test. Individual adjustment of bearing and loading bars was done respecting the length of each specimen. Subgroups of light ( 400 g, n = 18) animals were formed and analysed separately. We furthermore compared the results of the individualised bending-setting to 20 femurs tested with a fix span of 15 mm. Results Femurs showed a length range of 34 to 46 mm. The failure loads ranged from 116 to 251 N (mean 175.4 ± 45.2 N; heavy animals mean 221 ± 18.9 N; light animals mean 138.1 ± 16.4 N) and stiffness ranged from 185 N/mm to 426 N/mm (mean 315.6 ± 63 N/mm; heavy animals mean 358.1 ± 34.64 N/mm; light animals mean 280.8 ± 59.85 N/mm). The correlation of densitometric techniques and failure loads was high (DXA R2 = 0.89 and pQCT R2 = 0.88). In comparison to femurs tested with a fix span, individual adaptation of biomechanical testing homogenized our data significantly. Most notably, the standard deviation of failure loads (221 ± 18.95 N individualized setting vs. 205.5 ± 30.36 N fixed) and stiffness (358.1 ± 34.64 N/mm individualized setting vs. 498.5 ± 104.8 N/mm fixed) was reduced by at least one third. Conclusions Total variation observed in any trait reflects biological and methodological variation. Precision of the method hence affects the statistical power of the study. By simply adapting the setting of the biomechanical testing, interindividual variation could be reduced, which improves the precision of the method significantly

    Acute Osteomyelitis of the Humerus mimicking Malignancy: Streptococcus pneumoniae as Exceptional Pathogen in an Immunocompetent Adult

    Get PDF
    Background Chronic osteomyelitis due to direct bone trauma or vascular insufficiency is a frequent problem in orthopaedic surgery. In contrast, acute haematogenous osteomyelitis represents a rare entity that almost exclusively affects prepubescent children or immunodeficient adults. Case Presentation In this article, we report the case of acute pneumococcal osteomyelitis of the humerus in an immunocompetent and otherwise healthy 44-year-old male patient presenting with minor inflammation signs and misleading clinical features. Conclusions The diagnosis had to be confirmed by open biopsy which allowed the initiation of a targeted therapy. A case of pneumococcal osteomyelitis of a long bone, lacking predisposing factors or trauma, is unique in adults and has not been reported previously
    corecore