13 research outputs found
Analytical study of the effect of recombination on evolution via DNA shuffling
We investigate a multi-locus evolutionary model which is based on the DNA
shuffling protocol widely applied in \textit{in vitro} directed evolution. This
model incorporates selection, recombination and point mutations. The simplicity
of the model allows us to obtain a full analytical treatment of both its
dynamical and equilibrium properties, for the case of an infinite population.
We also briefly discuss finite population size corrections
Control of Oxo-Group Functionalization and Reduction of the Uranyl Ion
yesUranyl complexes of a large, compartmental
N8-macrocycle adopt a rigid, “Pacman” geometry that stabilizes
the UV oxidation state and promotes chemistry at a single
uranyl oxo-group. We present here new and straightforward
routes to singly reduced and oxo-silylated uranyl Pacman
complexes and propose mechanisms that account for the
product formation, and the byproduct distributions that are
formed using alternative reagents. Uranyl(VI) Pacman
complexes in which one oxo-group is functionalized by a
single metal cation are activated toward single-electron
reduction. As such, the addition of a second equivalent of a
Lewis acidic metal complex such as MgN″2 (N″ = N(SiMe3)2) forms a uranyl(V) complex in which both oxo-groups are Mg
functionalized as a result of Mg−N bond homolysis. In contrast, reactions with the less Lewis acidic complex [Zn(N″)Cl] favor
the formation of weaker U−O−Zn dative interactions, leading to reductive silylation of the uranyl oxo-group in preference to
metalation. Spectroscopic, crystallographic, and computational analysis of these reactions and of oxo-metalated products isolated
by other routes have allowed us to propose mechanisms that account for pathways to metalation or silylation of the exo-oxogroup