154 research outputs found

    Organ-specific responses during brain death:increased aerobic metabolism in the liver and anaerobic metabolism with decreased perfusion in the kidneys

    Get PDF
    Hepatic and renal energy status prior to transplantation correlates with graft survival. However, effects of brain death (BD) on organ-specific energy status are largely unknown. We studied metabolism, perfusion, oxygen consumption, and mitochondrial function in the liver and kidneys following BD. BD was induced in mechanically-ventilated rats, inflating an epidurally-placed Fogarty-catheter, with sham-operated rats as controls. A 9.4T-preclinical MRI system measured hourly oxygen availability (BOLD-related R2*) and perfusion (T1-weighted). After 4 hrs, tissue was collected, mitochondria isolated and assessed with high-resolution respirometry. Quantitative proteomics, qPCR, and biochemistry was performed on stored tissue/plasma. Following BD, the liver increased glycolytic gene expression (Pfk-1) with decreased glycogen stores, while the kidneys increased anaerobic- (Ldha) and decreased gluconeogenic-related gene expression (Pck-1). Hepatic oxygen consumption increased, while renal perfusion decreased. ATP levels dropped in both organs while mitochondrial respiration and complex I/ATP synthase activity were unaffected. In conclusion, the liver responds to increased metabolic demands during BD, enhancing aerobic metabolism with functional mitochondria. The kidneys shift towards anaerobic energy production while renal perfusion decreases. Our findings highlight the need for an organ-specific approach to assess and optimise graft quality prior to transplantation, to optimise hepatic metabolic conditions and improve renal perfusion while supporting cellular detoxification

    Effect of remote ischaemic conditioning on infarct size and remodelling in ST-segment elevation myocardial infarction patients: the CONDI-2/ERIC-PPCI CMR substudy

    Get PDF
    The effect of limb remote ischaemic conditioning (RIC) on myocardial infarct (MI) size and left ventricular ejection fraction (LVEF) was investigated in a pre-planned cardiovascular magnetic resonance (CMR) substudy of the CONDI-2/ERIC-PPCI trial. This single-blind multi-centre trial (7 sites in UK and Denmark) included 169 ST-segment elevation myocardial infarction (STEMI) patients who were already randomised to either control (n = 89) or limb RIC (n = 80) (4 × 5 min cycles of arm cuff inflations/deflations) prior to primary percutaneous coronary intervention. CMR was performed acutely and at 6 months. The primary endpoint was MI size on the 6 month CMR scan, expressed as median and interquartile range. In 110 patients with 6-month CMR data, limb RIC did not reduce MI size [RIC: 13.0 (5.1–17.1)% of LV mass; control: 11.1 (7.0–17.8)% of LV mass, P = 0.39], or LVEF, when compared to control. In 162 patients with acute CMR data, limb RIC had no effect on acute MI size, microvascular obstruction and LVEF when compared to control. In a subgroup of anterior STEMI patients, RIC was associated with lower incidence of microvascular obstruction and higher LVEF on the acute scan when compared with control, but this was not associated with an improvement in LVEF at 6 months. In summary, in this pre-planned CMR substudy of the CONDI-2/ERIC-PPCI trial, there was no evidence that limb RIC reduced MI size or improved LVEF at 6 months by CMR, findings which are consistent with the neutral effects of limb RIC on clinical outcomes reported in the main CONDI-2/ERIC-PPCI trial

    The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology

    Get PDF
    Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury

    Danish study of Non-Invasive testing in Coronary Artery Disease 2 (Dan-NICAD 2): study design for a controlled study of diagnostic accuracy

    Get PDF
    Background: Coronary computed tomography angiography (CTA) is the preferred primary diagnostic modality when examining patients with low to intermediate pre-test probability of coronary artery disease (CAD). Only 20-30% of these have potentially obstructive CAD. Because of the relatively poor positive predictive value of coronary CTA, unnecessary invasive coronary angiographies (ICA) are conducted with the costs and risks associated with the procedure. Hence, an optimized diagnostic CAD algorithm may reduce the numbers of ICAs not followed by revascularization. The Dan-NICAD 2 study has three equivalent main aims: 1) to examine the diagnostic precision of a sound based diagnostic algorithm, The CADScor®System (Acarix A/S, Denmark), in patients with a low to intermediate pre-test risk of CAD referred to a primary examination by coronary CTA. We hypothesize that the CADScor®System provides better stratification prior to coronary CTA than clinical risk stratification scores alone. 2) to compare the diagnostic accuracy of 3 Tesla cardiac magnetic resonance imaging (3T CMRI), 82Rubidium positron emission tomography (82Rb-PET) and CT-derived fractional flow reserve (FFRCT) in patients where obstructive CAD cannot be ruled out by coronary CTA using ICA fractional flow reserve (FFR) as reference standard. 3) to compare the diagnostic performance of quantitative flow ratio (QFR) and ICA-FFR in patients with low to intermediate pre-test probability of CAD using 82Rb-PET as reference standard. Methods/design: Dan-NICAD 2 is a prospective, multicenter, cross-sectional study including approximately 2,000 patients with low to intermediate pre-test probability of CAD and without previous history of CAD. Patients are referred to CTA because of symptoms suggestive of CAD, as evaluated by a cardiologist. Patient interviews, sound recordings, and blood samples are obtained in connection with the coronary CTA. If coronary CTA does not rule-out obstructive CAD, patients will be examined by both 3T CMRI, 82Rb-PET, FFRCT, ICA and FFR. Reference standard is ICA-FFR. Obstructive CAD is defined as an FFR ≤0.80 or as high-grade stenosis (>90 % diameter stenosis) by visual assessment. Diagnostic performance will be evaluated as sensitivity, specificity, predictive values, likelihood ratios, calibration, and discrimination. Enrolment started January 2018 and is expected to be completed by June 2020. Patients are followed for 10 years after inclusion. Discussion: The results of the Dan-NICAD 2 study are expected to contribute to the improvement of diagnostic strategies for patients suspected of CAD in three different steps; risk-stratification prior to coronary CTA, diagnostic strategy after coronary CTA and invasive wireless QFR analysis as an alternative to ICA-FFR. Study registration: Clinicaltrials.gov identifier, NCT03481712. Registered on January 25th 2018.Aarhus UniversityHealth Research Fund of Central Denmark RegionAcarix A/

    Meeting report from the 2nd International Symposium on New Frontiers in Cardiovascular Research. Protecting the cardiovascular system from ischemia: between bench and bedside

    Get PDF
    © 2015, The Author(s). Recent advances in basic cardiovascular research as well as their translation into the clinical situation were the focus at the last “New Frontiers in Cardiovascular Research meeting”. Major topics included the characterization of new targets and procedures in cardioprotection, deciphering new players and inflammatory mechanisms in ischemic heart disease as well as uncovering microRNAs and other biomarkers as versatile and possibly causal factors in cardiovascular pathogenesis. Although a number of pathological situations such as ischemia–reperfusion injury or atherosclerosis can be simulated and manipulated in diverse animal models, also to challenge new drugs for intervention, patient studies are the ultimate litmus test to obtain unequivocal information about the validity of biomedical concepts and their application in the clinics. Thus, the open and bidirectional exchange between bench and bedside is crucial to advance the field of ischemic heart disease with a particular emphasis of understanding long-lasting approaches in cardioprotection

    Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery

    Get PDF
    © 2016, The Author(s).To commemorate the auspicious occasion of the 30th anniversary of IPC, leading pioneers in the field of cardioprotection gathered in Barcelona in May 2016 to review and discuss the history of IPC, its evolution to IPost and RIC, myocardial reperfusion injury as a therapeutic target, and future targets and strategies for cardioprotection. This article provides an overview of the major topics discussed at this special meeting and underscores the huge importance and impact, the discovery of IPC has made in the field of cardiovascular research
    • …
    corecore