25 research outputs found

    Calibration of oxygen 1s ionization energies. Accurate energies for CO2, H2O, CO, and O2

    Get PDF
    Access to accurate reference data is a prerequisite in order to translate chemical shifts to an absolute scale for inner-shell ionization energies. Calibration standards for oxygen 1s (O 1s) ionization energies are less well established than, for instance, for carbon 1s. To improve upon this situation, adiabatic and vertical O 1s ionization energies for gaseous carbon dioxide (CO2) are critically reviewed and used to establish the most accurate values currently available: 541.085(17) and 541.253(17) eV, respectively. Combining these with new precise measurements of shifts in O 1s ionization energies for H2O, CO, and O2 allows us to establish equally accurate absolute ionization energies for these molecules as for CO2. The resulting adiabatic and vertical energies are 539.728(17) and 539.827(17) eV for H2O, 542.439(17) and 542.495(17) eV for CO, 543.285(17) and 543.294(17) eV for O2 (4Σ final state), and 544.338(17) and 544.423(17) eV for O2 (2Σ final state). It is proposed that O 1s in CO2 be adopted as a standard of higher precedence, and that H2O, CO, and O2 be used also. The O 1s ionization energies in these molecules occur in the range 540–543 eV. These proposed standards should provide optimal internal calibration for a wide range of oxygen-containing compounds.publishedVersio

    Formation and Growth of Clusters of Sulfur Dioxide

    Get PDF
    Formation and growth of neutral SO2 clusters is investigated in an adiabatic-expansion setup by means of sulfur 2p (S2p) photoelectron spectroscopy and theoretical modeling. The shift in S2p ionization energy between the cluster and a single molecule, i.e., IE(cluster)-IE(monomer), is recorded and used to monitor the mean cluster size over a wide range of expansion conditions. The produced clusters were shown to fall into two different size regimes. Comparison between theoretical simulations and experimental observations suggests that while the smallest clusters belong to the ultrafine particle mode and have a liquid-like structure, the larger clusters belong to the accumulation mode of fine particles and possibly have a frozen cluster core. The transition between the two size/structure regimes occurs over a narrow interval in expansion conditions and may possibly reflect a change in growth mechanism from monomer addition to growth by cluster-cluster collisions

    Quantum Chemical Investigation of Ethylene Insertion into the Cr−CH 3

    No full text

    Carbon 1s Photoelectron Spectroscopy of Halomethanes. Effects of Electronegativity, Hardness, Charge Distribution, and Relaxation

    Get PDF
    Carbon 1s ionization energies have been measured for 12 halomethanes. These together with earlier measurements provide 27 compounds for investigating the relationship between core-ionization energies and the electronegativity and hardness of the halogens. The ionization energies correlate nearly linearly with the sum of the electronegativities of the halogens attached to the central carbon. Both electronegativity and hardness play important roles in determining the ionization energy, and it is found that the linear relationship between ionization energy and electronegativity arises from an interplay of the electronegativity and hardness of the halogens and the length and ionicity of the carbon-halogen bond
    corecore