3,173 research outputs found
QCD Analysis of Polarized Deep Inelastic Scattering Data
A QCD analysis of the world data on inclusive polarized deep inelastic
scattering of leptons on nucleons is presented in leading and next-to-leading
order. New parameterizations are derived for the quark and gluon distributions
and the value of is determined. Emphasis is put on the
derivation of fully correlated error bands for these distributions which are
directly applicable to determine experimental errors of other polarized
observables. The impact of the variation of both the renormalization and
factorization scales on the value of is studied. Finally a
factorization-scheme invariant QCD analysis based on the observables
and is performed in next-to-leading
order, which is compared to the standard analysis.Comment: 6 pages LATEX, 4 aps style and other files, 3 eps-files, to appear in
the Proceedings of `QCD at Work', Martina Franca, June 200
Out of equilibrium correlations in the XY chain
We study the transversal XY spin-spin correlations in the non-equilibrium
steady state constructed in \cite{AP03} and prove their spatial exponential
decay close to equilibrium
Microphase separation in polyelectrolytic diblock copolymer melt : weak segregation limit
We present a generalized theory of microphase separation for charged-neutral
diblock copolymer melt. Stability limit of the disordered phase for salt-free
melt has been calculated using Random Phase Approximation (RPA) and
self-consistent field theory (SCFT). Explicit analytical free energy
expressions for different classical ordered microstructures (lamellar, cylinder
and sphere) are presented. We demonstrate that chemical mismatch required for
the onset of microphase separation () in charged-neutral
diblock melt is higher and the period of ordered microstructures is lower than
those for the corresponding neutral-neutral diblock system. Theoretical
predictions on the period of ordered structures in terms of Coulomb
electrostatic interaction strength, chain length, block length, and the
chemical mismatch between blocks are presented. SCFT has been used to go beyond
the stability limit, where electrostatic potential and charge distribution are
calculated self-consistently. Stability limits calculated using RPA are in
perfect agreement with the corresponding SCFT calculations. Limiting laws for
stability limit and the period of ordered structures are presented and
comparisons are made with an earlier theory. Also, transition boundaries
between different morphologies have been investigated
Polarized Parton Densities
In this talk we summarize main results of a recent determination of the
polarized deeply inelastic parton distributions to NLO from the world data. In
the analysis the LO and NLO parton densities and their statistical
errors were derived and parameterized. The strong coupling constant
is determined Comparisons of the
low moments of the parton densities with recent lattice results are given. A
detailed error-analysis of the gluon density is performed.Comment: 3 pages LATEX, 1 style file, 1 eps file, to appear in the Proceedings
of PANIC '02, Osaka, Ocrober 200
Characterization of oxygen phases created during oxidation of Ru(0001)
Thermal desorption spectroscopy, ultraviolet photoelectron spectroscopy, low energy electron diffraction (LEED), and the reactive scattering of a CO molecular beam have been applied to determine the relationship between the formation of the subsurface oxygen phase and the growth of oxides during oxidation of Ru(0001). Emission of RuOx (xpxOy phase takes place within the temperature region of 900–1150 K. The growth of oxide films becomes the dominating reaction channel when performing the oxidation at temperatures higher than the onset for oxygen desorption. The oxide formation is strongly reduced when conducting the oxidation at temperatures higher than 1250 K. In this case only a relatively low amount of oxygen atoms adsorbed on the bare Ru surface can be achieved, neither oxides nor subsurface oxygen have been found. The presence of a RuO2 coating layer manifests itself by LEED patterns characteristic for a particular RuO2 single crystal face as well as by additional features in the valence ultraviolet photoelectron spectra. The oxidation of CO molecules reactively scattered at these oxygen-rich surfaces proceeds as long as mobile oxygen atoms are present in the subsurface region. The reaction is entirely quenched when the subsurface oxygen is replaced by an uniform film of RuO2
H.E.S.S. discovery of very-high-energy gamma-ray emission of PKS 1440-389
Blazars are the most abundant class of known extragalactic very-high-energy
(VHE, E>100 GeV) gamma-ray sources. However, one of the biggest difficulties in
investigating their VHE emission resides in their limited number, since less
than 60 of them are known by now. In this contribution we report on H.E.S.S.
observations of the BL Lac object PKS 1440-389. This source has been selected
as target for H.E.S.S. based on its high-energy gamma-ray properties measured
by Fermi-LAT. The extrapolation of this bright, hard-spectrum gamma-ray blazar
into the VHE regime made a detection on a relatively short time scale very
likely, despite its uncertain redshift. H.E.S.S. observations were carried out
with the 4-telescope array from February to May 2012 and resulted in a clear
detection of the source. Contemporaneous multi-wavelength data are used to
construct the spectral energy distribution of PKS 1440-389 which can be
described by a simple one-zone synchrotron-self Compton model.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherland
Absolute velocity measurements in sunspot umbrae
In sunspot umbrae, convection is largely suppressed by the strong magnetic
field. Previous measurements reported on negligible convective flows in umbral
cores. Based on this, numerous studies have taken the umbra as zero reference
to calculate Doppler velocities of the ambient active region. To clarify the
amount of convective motion in the darkest part of umbrae, we directly measured
Doppler velocities with an unprecedented accuracy and precision. We performed
spectroscopic observations of sunspot umbrae with the Laser Absolute Reference
Spectrograph (LARS) at the German Vacuum Tower Telescope. A laser frequency
comb enabled the calibration of the high-resolution spectrograph and absolute
wavelength positions. A thorough spectral calibration, including the
measurement of the reference wavelength, yielded Doppler shifts of the spectral
line Ti i 5713.9 {\AA} with an uncertainty of around 5 m s-1. The measured
Doppler shifts are a composition of umbral convection and magneto-acoustic
waves. For the analysis of convective shifts, we temporally average each
sequence to reduce the superimposed wave signal. Compared to convective
blueshifts of up to -350 m s-1 in the quiet Sun, sunspot umbrae yield a
strongly reduced convective blueshifts around -30 m s-1. {W}e find that the
velocity in a sunspot umbra correlates significantly with the magnetic field
strength, but also with the umbral temperature defining the depth of the
titanium line. The vertical upward motion decreases with increasing field
strength. Extrapolating the linear approximation to zero magnetic field
reproduces the measured quiet Sun blueshift. Simply taking the sunspot umbra as
a zero velocity reference for the calculation of photospheric Dopplergrams can
imply a systematic velocity error.Comment: 10 pages, 7 figures, 2 tables, Appendix with 5 figure
Feller Processes: The Next Generation in Modeling. Brownian Motion, L\'evy Processes and Beyond
We present a simple construction method for Feller processes and a framework
for the generation of sample paths of Feller processes. The construction is
based on state space dependent mixing of L\'evy processes.
Brownian Motion is one of the most frequently used continuous time Markov
processes in applications. In recent years also L\'evy processes, of which
Brownian Motion is a special case, have become increasingly popular.
L\'evy processes are spatially homogeneous, but empirical data often suggest
the use of spatially inhomogeneous processes. Thus it seems necessary to go to
the next level of generalization: Feller processes. These include L\'evy
processes and in particular Brownian motion as special cases but allow spatial
inhomogeneities.
Many properties of Feller processes are known, but proving the very existence
is, in general, very technical. Moreover, an applicable framework for the
generation of sample paths of a Feller process was missing. We explain, with
practitioners in mind, how to overcome both of these obstacles. In particular
our simulation technique allows to apply Monte Carlo methods to Feller
processes.Comment: 22 pages, including 4 figures and 8 pages of source code for the
generation of sample paths of Feller processe
- …