695 research outputs found

    Conformally invariant wave-equations and massless fields in de Sitter spacetime

    Full text link
    Conformally invariant wave equations in de Sitter space, for scalar and vector fields, are introduced in the present paper. Solutions of their wave equations and the related two-point functions, in the ambient space notation, have been calculated. The ``Hilbert'' space structure and the field operator, in terms of coordinate independent de Sitter plane waves, have been defined. The construction of the paper is based on the analyticity in the complexified pseudo-Riemanian manifold, presented first by Bros et al.. Minkowskian limits of these functions are analyzed. The relation between the ambient space notation and the intrinsic coordinates is then studied in the final stage.Comment: 21 pages, LaTeX, some details adde

    Anharmonic double-phonon excitations in the interacting boson model

    Get PDF
    Double-Îł\gamma vibrations in deformed nuclei are analyzed in the context of the interacting boson model. A simple extension of the original version of the model towards higher-order interactions is required to explain the observed anharmonicities of nuclear vibrations. The influence of three- and four-body interactions on the moments of inertia of ground- and Îł\gamma-bands, and on the relative position of single-Îł\gamma and double-Îł\gamma bands is studied in detail. As an example of a realistic calculation, spectra and transitions of the highly Îł\gamma-anharmonic nuclei 164^{164}Dy, 166^{166}Er, and 168^{168}Er are interpreted in this approach.Comment: 38 pages, TeX (ReVTeX). 15 ps figures. Submitted to Phys. Rev.

    Study of the neutron quantum states in the gravity field

    Full text link
    We have studied neutron quantum states in the potential well formed by the earth's gravitational field and a horizontal mirror. The estimated characteristic sizes of the neutron wave functions in the two lowest quantum states correspond to expectations with an experimental accuracy. A position-sensitive neutron detector with an extra-high spatial resolution of ~2 microns was developed and tested for this particular experiment, to be used to measure the spatial density distribution in a standing neutron wave above a mirror for a set of some of the lowest quantum states. The present experiment can be used to set an upper limit for an additional short-range fundamental force. We studied methodological uncertainties as well as the feasibility of improving further the accuracy of this experiment

    GRANIT project: a trap for gravitational quantum states of UCN

    Full text link
    Previous studies of gravitationally bound states of ultracold neutrons showed the quantization of energy levels, and confirmed quantum mechanical predictions for the average size of the two lowest energy states wave functions. Improvements in position-like measurements can increase the accuracy by an order of magnitude only. We therefore develop another approach, consisting in accurate measurements of the energy levels. The GRANIT experiment is devoted to the study of resonant transitions between quantum states induced by an oscillating perturbation. According to Heisenberg's uncertainty relations, the accuracy of measurement of the energy levels is limited by the time available to perform the transitions. Thus, trapping quantum states will be necessary, and each source of losses has to be controlled in order to maximize the lifetime of the states. We discuss the general principles of transitions between quantum states, and consider the main systematical losses of neutrons in a trap.Comment: presented in ISINN 15 seminar, Dubn

    Integration of D-dimensional 2-factor spaces cosmological models by reducing to the generalized Emden-Fowler equation

    Get PDF
    The D-dimensional cosmological model on the manifold M=R×M1×M2M = R \times M_{1} \times M_{2} describing the evolution of 2 Einsteinian factor spaces, M1M_1 and M2M_2, in the presence of multicomponent perfect fluid source is considered. The barotropic equation of state for mass-energy densities and the pressures of the components is assumed in each space. When the number of the non Ricci-flat factor spaces and the number of the perfect fluid components are both equal to 2, the Einstein equations for the model are reduced to the generalized Emden-Fowler (second-order ordinary differential) equation, which has been recently investigated by Zaitsev and Polyanin within discrete-group analysis. Using the integrable classes of this equation one generates the integrable cosmological models. The corresponding metrics are presented. The method is demonstrated for the special model with Ricci-flat spaces M1,M2M_1,M_2 and the 2-component perfect fluid source.Comment: LaTeX file, no figure

    Toda chains with type A_m Lie algebra for multidimensional m-component perfect fluid cosmology

    Get PDF
    We consider a D-dimensional cosmological model describing an evolution of Ricci-flat factor spaces, M_1,...M_n (n > 2), in the presence of an m-component perfect fluid source (n > m > 1). We find characteristic vectors, related to the matter constants in the barotropic equations of state for fluid components of all factor spaces. We show that, in the case where we can interpret these vectors as the root vectors of a Lie algebra of Cartan type A_m=sl(m+1,C), the model reduces to the classical open m-body Toda chain. Using an elegant technique by Anderson (J. Math. Phys. 37 (1996) 1349) for solving this system, we integrate the Einstein equations for the model and present the metric in a Kasner-like form.Comment: LaTeX, 2 ps figure

    Cosmological thermodynamics and deflationary gas universe

    Get PDF
    We establish a general thermodynamic scheme for cosmic fluids with internal self-interactions and discuss equilibrium and non-equilibrium aspects of such systems in connection with (generalized) symmetry properties of the cosmological dynamics. As an example we construct an exactly solvable gas dynamical model of a ``deflationary'' transition from an initial de Sitter phase to a subsequent Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) period. We demonstrate that this dynamics represents a manifestation of a conformal symmetry of an ``optical'' metric, characterized by a specific effective refraction index of the cosmic medium.Comment: 12 pages, to appear in PR

    Displacement of the Scholar? Participatory Action Research under COVID-19

    Get PDF
    The impact of COVID-19 on conducting research is far-reaching, especially for those scholars working for or alongside communities. As the pandemic continues to create and exacerbate many of the issues that communities at the margins faced pre-pandemic, such as health disparities and access to resources, it also creates particular difficulties in collaborative, co-developed participatory research and scholar-activism. These forms of community engagement require the commitment of researchers to look beyond the purview of the racialized capitalist and neoliberal structures and institutions that tend to limit the scope of our research and engagement. Both the presence of the researcher within the community as well as deep community trust in the researcher is required in order to identify and prioritize local, often counter-hegemonic forms of knowledge production, resources, and support networks. The pandemic and similar conditions of crises has likely limited opportunities for building long-term, productive relationships of mutual trust and reciprocity needed for PAR while communities refocus on meeting basic needs. The pandemic has now not only exacerbated existing disparities and made the need for engaged, critical and co-creative partnerships even greater, it has also abruptly halted opportunities for partnerships to occur, and further constrained funds to support communities partnering with researchers. In this paper we highlight accomplishments and discuss the many challenges that arise as participatory action researchers are displaced from the field and classroom, such as funding obstacles and working remotely. An analysis of experiences of the displacement of the scholar exposes the conflicts of conducting PAR during crises within a state of academic capitalism. These experiences are drawn from our work conducting PAR during COVID-19 around the globe, both in urban and rural settings, and during different stages of engagement. From these findings the case is made for mutual learning from peer-experiences and institutional support for PAR. As future crises are expected, increased digital resources and infrastructure, academic flexibility and greater consideration of PAR, increased funding for PAR, and dedicated institutional support programs for PAR are needed

    Cosmological perturbations in the inflationary Universe

    Get PDF
    Previously defined covariant and gauge-invariant perturbation variables, representing, e.g., the fractional spatial energy density gradient on hypersurfaces of constant expansion, are used to simplify the linear perturbation analysis of a classical scalar field. With the help of conserved quantities on large scales we establish an exact first-order relation between comoving fluid energy density perturbations at `reentry' into the horizon and corresponding scalar field energy density perturbations at the first Hubble scale crossing during an early de Sitter phase of a standard inflationary scenario.Comment: 11 pages, Revtex, to appear in PR
    • 

    corecore