2,639 research outputs found

    Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering

    Full text link
    A previous calculation of electroweak O(alpha) corrections to deep-inelastic neutrino scattering, as e.g. measured by NuTeV and NOMAD, is supplemented by higher-order effects. In detail, we take into account universal two-loop effects from \Delta\alpha and \Delta\rho as well as higher-order final-state photon radiation off muons in the structure function approach. Moreover, we make use of the recently released O(alpha)-improved parton distributions MRST2004QED and identify the relevant QED factorization scheme, which is DIS like. As a technical byproduct, we describe slicing and subtraction techniques for an efficient calculation of a new type of real corrections that are induced by the generated photon distribution. A numerical discussion of the higher-order effects suggests that the remaining theoretical uncertainty from unknown electroweak corrections is dominated by non-universal two-loop effects and is of the order 0.0003 when translated into a shift in sin^2\theta_W=1-MW^2/MZ^2. The O(alpha) corrections implicitly included in the parton distributions lead to a shift of about 0.0004.Comment: 25 pages, latex, 8 postscript figure

    The installation of Alice on the PDP 11/45 under Unix

    Get PDF

    Alice: an exercise in program portability

    Get PDF

    In Quest for Proper Mediums for Technology Transfer in Software Engineering

    Get PDF
    Successful transfer of the results of research projects into practice is of great interest to all project participants. It can be assumed that different transfer mediums fulfill technology transfer (TT) with different levels of success and that they are impaired by different kinds of barriers. The goal of this study is to gain a better understanding about the different mediums used for TT in software engineering, and to identify barriers weakening the success of the application of such mediums. We conducted an exploratory study implemented by a survey in the context of a German research project with a broad range of used mediums. The main reported barriers were low expectations of usefulness, no awareness of existence, lack of resources, or inadequateness in terms of outdated material or being in an immature state. We interpreted our results as symptoms of a lack of a dissemination plan in the project. Further work will be needed to explore the implications for the transfer of research results (knowledge and techniques) to practice.Comment: Proceedings of the International Conference on Empirical Software Engineering and Measurement, 201

    Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles

    Get PDF
    The Weyl-van-der-Waerden spinor technique for calculating helicity amplitudes of massive and massless particles is presented in a form that is particularly well suited to a direct implementation in computer algebra. Moreover, we explain how to exploit discrete symmetries and how to avoid unphysical poles in amplitudes in practice. The efficiency of the formalism is demonstrated by giving explicit compact results for the helicity amplitudes of the processes gamma gamma -> f fbar, f fbar -> gamma gamma gamma, mu^- mu^+ -> f fbar gamma.Comment: 24 pages, late

    Morita base change in Hopf-cyclic (co)homology

    Full text link
    In this paper, we establish the invariance of cyclic (co)homology of left Hopf algebroids under the change of Morita equivalent base algebras. The classical result on Morita invariance for cyclic homology of associative algebras appears as a special example of this theory. In our main application we consider the Morita equivalence between the algebra of complex-valued smooth functions on the classical 2-torus and the coordinate algebra of the noncommutative 2-torus with rational parameter. We then construct a Morita base change left Hopf algebroid over this noncommutative 2-torus and show that its cyclic (co)homology can be computed by means of the homology of the Lie algebroid of vector fields on the classical 2-torus.Comment: Final version to appear in Lett. Math. Phy

    Dynamic networks of parallel processes : (preprint)

    Get PDF

    The role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials

    Get PDF
    We assert that the physics underlying the extraordinary light transmission (reflection) in nanostructured materials can be understood from rather general principles based on the formal scattering theory developed in quantum mechanics. The Maxwell equations in passive (dispersive and absorptive) linear media are written in the form of the Schr\"{o}dinger equation to which the quantum mechanical resonant scattering theory (the Lippmann-Schwinger formalism) is applied. It is demonstrated that the existence of long-lived quasistationary eigenstates of the effective Hamiltonian for the Maxwell theory naturally explains the extraordinary transmission properties observed in various nanostructured materials. Such states correspond to quasistationary electromagnetic modes trapped in the scattering structure. Our general approach is also illustrated with an example of the zero-order transmission of the TE-polarized light through a metal-dielectric grating structure. Here a direct on-the-grid solution of the time-dependent Maxwell equations demonstrates the significance of resonances (or trapped modes) for extraordinary light transmissioComment: 14 pages, 6 figures; Discussion in Section 4 expanded; typos corrected; a reference added; Figure 4 revise

    Higgs coupling constants as a probe of new physics

    Full text link
    We study new physics effects on the couplings of weak gauge bosons with the lightest CP-even Higgs boson (hh), hZZhZZ, and the tri-linear coupling of the lightest Higgs boson, hhhhhh, at the one loop order, as predicted by the two Higgs doublet model. Those renormalized coupling constants can deviate from the Standard Model (SM) predictions due to two distinct origins; the tree level mixing effect of Higgs bosons and the quantum effect of additional particles in loop diagrams. The latter can be enhanced in the renormalized hhhhhh coupling constant when the additional particles show the non-decoupling property. Therefore, even in the case where the hZZhZZ coupling is close to the SM value, deviation in the hhhhhh coupling from the SM value can become as large as plus 100 percent, while that in the hZZhZZ coupling is at most minus 1 percent level. Such large quantum effect on the Higgs tri-linear coupling is distinguishable from the tree level mixing effect, and is expected to be detectable at a future linear collider.Comment: 52 pages, 10 figures, revtex
    corecore