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1 • THE LANGUAGE 

1.1. Informal description 

A program consist of a number o.f . process declarations and a main 

body. In the main body processes are initiated and connected together 

into a process network by means of channels. The processes communicate 

with each other via these channels only. Channels are queues of messages 

(also called tokens or values). The processes look very much like 

coroutines. 

Each process declaration consists of a heading and a body. In the 

heading formal channels are declared, specifying the name, whether the 

channel is an input channel or an output channel, and the type of the 

tokens travelling on the channel. Apart from formal channels, formal 

value parameters can occur in the heading. The body of a process 

declaration consists of ordinary data declarations, control structures, 

assignment statements and two communication statements: read and write. A 

process can read ( consume a value) from an input channel and write 

(produce a value) on an output channel. If a channel is empty when the 

consuming process performs a read on it, the consuming process is blocked 

until the producing process has written a value on the channel. 

So the model looks very much like the coroutines of e.g. SL5 

[SL5D1a] except that when a process writes a value on one of its output 

channels ("resumes an environment" in SL5 terminology) it is not 

suspended but carries on in parallel with the process it has activated. 

The model can also be viewed as a data driven model or as a history level 

data flow model. 

I· 
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EXAMPLE 

(process I(string in ear string out mouth): 

(string l; 

repeat read(ear,l); write(mouth,"goodbye") 

forever 

) ; 

process you(string in ear, string out mouth): 

(string 1:J 
repeat write(mouth,"hello"); read(ear,l) 

forever 

) ; 

main I(line1 ,line2) I l you(line2,line1) 

) 

The above program shows one instance of an "I" process declaration 

and one instance of a "you" process declaration, communicating via two 

string channels line 1 and line2. In this particular example there will 

never ·be more than one string on the channels: 

' 19ood½-t-11 

1 • 2. Semantics 

The semantics of parallel processes like the above has been sketched 

in [KAHN74]. Each process specifies a function which takes input 

histories as arguments and yields output histories. A history is a 

(possibly infinite, possibly empty) sequence of values. The input and 



output histories are meant to model the sequences of values that travel 

on the channels. For instance the process "I" described above determines 

a function f taking an input history consisting of strings and yielding 

an output history of the same type. More formally, we have f:D->D where 

Dis the domain of all sequences of strings. We define f(X) to be the 

sequence consisting of strings "goodbye" with the same length as X. 

Notice that f(X) does not depend on the contents of X but only on its 

length. Similarly we have the function g:D->D where g(Y) is the sequence 

of strings "hello" which has the same length as Y. 

In general it will not be possible to give a straightforward 

definition of such functions. Often these definitions will be recursive. 

The recursive version of the definition off is: 

f(X) { 
<>, if X = <> 

= <"goodbye">" f(R(X)), if Xi<> 

where <> denotes the empty sequence, denotes concatenation of 

sequences, R (X) denotes the sequence of all elements of X except the 

first one. We also have the function F(X) which takes the first element 

from X. So in general we have X = F(X)"R(X) for non-empty X. 

The output that a process yields is generally not only dependent on 

its input but also on the value of its local variables. The function 

describing the meaning of the process will therefore often have an extra 

parameter giving the relevant part of the internal state of the process • 

Suppose, by way of example, that the process "you" above does not 

only say "hello" but also tells how many times it has said "hello". The 

function corresponding to this process can then be defined as follows: 

{ 
<>, if X = <> 

f(count,X) = 
<"hello",string(count+1)> "f(count+1,R(X)), 

otherwise. 

(string(val) converts an integer value to an english word). 

3, 
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The meaning of the new process "you" is given by the function g 

defined by 

g(X) = f(O,X) 

The functions corresponding to processes have several properties and 

we will discuss some of these now. 

Histories can be ordered according to the information they contain. 

We say that history Y contains more information than history X, notation 

XS Y, if X is a prefix (not necessarily a proper prefix) of Y. Now it 

can immediately be seen that functions which are meanings of processes 

are monotonic, that is (restricting ourselves to the case of one input 

and one output channel): if X 5 Y then f(X) ~ f(Y). For a process takes 

its input values one by one from the input channel and its actions are 

completely determined by these values. So if input history Xis a prefix 

of input history Y, then the process will act identically on the common 

prefix and thus generate the same values on the output channel. The 

remaining input on input history Y can only have the effect that more 

values will be added to the output history. 

The next property, continuity, has something to do with 

approximating an infinite sequence by its finite prefixes. These prefixes 

form a chain, that is a row of histories x1,x2,x3, ••• such that XiE Xi+i 

for every i. Now every such chain has a least upper boundUXi. This is so 

because either the chain is stable, that is the chain has a tail Xk !: 

Xk+i = Xk+2 = Xk+3 = ••• and then Xi= Xk+ 1, or the chain is not stable 

but then every element X. has length greater than a predecessor X. and 
i i-n 

UXi will be the infinite history X with the property that all Xi from the 

chain are a prefix of X. 

Now suppose that a process P yields, when given an infinite input 

history X, an infinite output history f(X). Consider the values f(X 1), 

f(X 2), ••• where f is the function associated with P and x1 s; x2 !: x3 
• • • is the row of all finite prefixes of X ( thus X = U X. ) • These values 

1 

form a chain (by monotonicity of f), that is we have f(X 1) 5 f(X2) ; 



f(X3) E • • • Now the crucial observation is that for every element x of 

f(X) we have that at the moment it is generated only a finite number of 

elements of X have been read. Furthermore, the whole sequence up to x 

must have have been generated • This means that an arbitrary finite 

approximation of the output history f(X) is given by letting process P 

work on a finite input history Xk: X. In other words: for all m there is 

a k such that f(Xk) has length ~ m and f(Xk) ~ f(X). And this is 

equivalent to saying that f(X) = f(UX.) = U f(X.). Now the latter equality 
J. J. 

is the definition of continuity. 

So we can conclude that every process P has a function f associated 

to it which is monotonic and continuous. 

Finally we will discuss the meaning of a network. IN [KAHN74] this 

meaning is defined as the histories on all channels. The meaning of the 

network 

given before will thus be a pair of histories <LINE1,LINE2> where LINE1 

and LINE2 contain an infinite number of "hello" s and II goodbye" s 

respectively. 

In general one can obtain a set of equations from a network 

specification and the functions corresponding to the processes in the 

network. These equations specify what the values of the histories are to 

be. In the above example we have 

Y = f(X) 

X = g(Y) 

where X,Y are the histories on line1 and line2 respectively. These 

equations have LINE1 and LINE2 as solutions. 

We now present a more intricate case: 

5, 
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We associate with this network the set of equations 

<X 1 ,X2> = f(X 3,x5) 

<X3,X4> = g(X2) 

x5 = h(X4,x6) 

The fact that functions f, g, and hare continuous guarantees that 

there is a solution in x1, ••• ,x6 of these equations. Moreover it can be 

proved that executing the programs in the processes results in histories 

that satisfy these equations. So the meaning of the program is rightly 

described by these equations. In subsequent sections we will prove 

properties of programs using only the fact that the histories on the 

channels satisfy equations such as the ones above. 

1.3. The dynamic model 

Up till now a process declaration contains ordinary statements 

dealing with the internal memory of the process and communication 

statements to manipulate its input and output channels. To make the model 

essentially more powerful than a sequential model we add an expand 

statement. 

The expand statement replaces the process in which it occurs by a 

(sub)network of processes. This subnetwork is connected to the rest of 

the. network via exactly the same input and output channels as the old 

process was. Expansion can be compared with SL5 filters [SL5D7a]. SL5 

allows only linearly shaped networks, while we allow all kinds of 

networks. 

When an expand statement is executed the following things happen: 



the old process is disconnected from the network; its channels are 

temporarily closed on the side of the expanding process. 

- new processes are created 

the newly · created processes and possibly the old process (which 

initiated the expansion) are connected by internal channels such that 

they form a subnetwork 

the subnetwork is connected to the rest of the network via the 

temporarily closed channels 

the new processes start computing in their initial state; the old 

process will proceed after the expand statement (if it is part of the 

subnetwork) • 

The rest of the network will carry on computing while an expansion takes 

place. 

An expand statement consists of a number of create parts and zero or 

one keep part. In the create parts new processes are called and their 

actual channel parameters and actual value parameters are specified. In 

the keep part the old process is called. The syntax: 

expand statement: 

expand, 

create parts ,( comma, keep part), 

(comma, create parts), 

expand. 

create parts: 

create part; 

create part, comma, create parts. 

create part: 

create process name with channel identifications, 

(comma, value identificati~ns), 
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keep part: 

keep process name with channel identifications. 

channel identifications: 

channel identification; 

channel identification, comma, channel identifications. 

channel identification: 

formal channel name= actual channel name. 

value identifications: 

value identification; 

value identification, comma, value identifications. 

value identification: 

formal value name= expression. 

The newly created actual channels will occur twice, once as an input 

channel and once as an output channel. The old channels will occur only 

once and their type will not change. The process name in a keep part is 

the name of the process in which the expansion occurs. 

So we have the following scheme; 



process P(in in1, ••• ,in out out 1, ••• ,out ): 
- n -- m 

( . 
expand 

create.~ ••• 

create ••••• 

keep ••••••• 

expand. 

) 

Now suppose f is the function corresponding to the process started 

just before the expand statement is executed. Thus f takes an n-tuple of 

histories as argument and yields an m-tuple as result. Now the effect of 

the expanding process on its histories must be the same as the effect of 

the network into which it expands. That is, we have 

f(X 1, ••• ,Xn) = (Y 1, ••• Ym) 

where 

y1 = ... 
y2 = ... 

y = •••• 
m 

(*) 

The output histories Y1, ••• ,Ym are a solution of the equations (*) 

derived from the network. Moreover it can be proved that it must be the 

smallest solution of(*). 

The right hand sides of these equations have the form g(Z 1, ••• ,Zk). 

So we have to determine these functions g. The processes occurring in the 

network are specified by the expand statement. We have the functions 

corresponding to the create parts to our disposal. The function 

corresponding to the keep part can be derived from the meaning of process 

P when started just after the expand statement with the values of the 

local variables as they were at the moment of expansion. 

9, 
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The meaning of the whole process P can be given as a composition of 

two parts. The second part is given by the function f. The first can be 

derived from the program text between the beginning and the expand 

statement. 

2. THE ALGORITHMS 

We now present the algorithms, which are of course what it's all 

about. The algorithms were conceived graphically. One thinks in pictures 

such as 

-0 
or 

-0 
The pictures translate easily into process declarations. They also 

help finding the functions. 

2. 1 • Sorting; in !!. tree. 

This algorithm is a straightforward adaptation of mergesort. The 

input consists of a finite sequence of integers followed by an end of 

file token(*). The input is read into the root of a perfectly balanced 

'tree': 



-0-
When the root gets more than two i terns it expands into a binary 

tree. The root now divides the input over its two subtrees. The subtrees 

act in the same way the whole tree does. When the* is encountered, the 

root sends it down to both its subtrees. The * travels down the tree 

until the leiaves of the tree are reached. Then the whole tree starts 

merging the elements upwards. 

The pictures below show what happens when the sequence 4, 3, 2, 5, * 

enters the network. 

I-
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(process sort(int in u int outs): 

(/* terminal node , u unsorted, s sorted*/ 

int, x; read(u,x); 

if x=* thien write(s,*) 

else int y; read(u,y); 

if Y=* then write(s,x); write(s,*) 

else expand create sorn with u=u, ls:lup, rs=rup, s=s, 

lu:ldwn, ru:rdwn, i1=x, i2=Y 

create sort with u:ldwn, s:lup 

create sort with u:rdwn, s:rup 

expand. 



if. 

if. 

) ; 

process sorn(int in u,ls,rs int out s,.lu,ru int i 1,12): 

(/* nonterminal node*/ 

int x; bool left=true, right:false; bool dir:=left; 

write(lu,i1); write(ru,i2); 

I* spread the unsorted input u over lu and ru */ 

while read(u,x); x,• do 

if dir:left then write(lu,x); dir::right 

else write(ru,x); dir::left 

if. 

write(lu,*); write(ru,*); 

I* merge the sorted inputs ls and rs*/ 

int l,r; 

read(ls,l); read(rs,r); 

repeat if l=* then /*flush rs*/ 

while r,• do write(s,r); read(rs,r) do. 

elif r=* then/* flush ls*/ 

while 1,• do write(s,l); read(ls,rl) do. 

elif l<r 

then write(s,l); read(ls,l) 

else write(s,r); read(rs,r) 

if. 

if. 

until·l=r=* 

write(s,*) 

) ; 

main 

int in unsorted; 

int out sorted; 
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sort(unsorted, sorted) 

) 

2.1.2. The functions 

We associate with process sort the function f 0 and with process sorn 

the function f 1 • f 1 takes six arguments: three input histories, the 

values of two input parameters and an extra argument, namely the current 

value of dir. We have 

f 0(<*> .... X) = <*> 

f 0(<a,*> .... X) = <a,*> 

f 0(<a,b> .... X) = f 1(X,Y,Z,a,b,true)~3, 

where Y = f 0(r 1(X,Y,Z,a,b,true),1) 

Z = f 0(f 1(X,Y,Z,a,b,true)~2) 

f,(u,LS,RS,x,y,dir) = (<x>,<y>,<>) .... f2(U,LS,RS,dir) 

r2(<*> .... U,LS,RS,dir) = (<*>,<*>,<>) .... f 3(U,LS,RS) 

f 2(<a> .... U,LS,RS,dir) = 
if dir = true then (<a>,<>,<>) .... f 2(U,LS,RS,,dir) 

else (<>,<a>,<>) .... f 2(U,LS,RS,1dir) 

r3(U,<*> .... LS,<*> .... RS) = (<>,<>,<*>) 

f 3(U,<*> .... LS,<a> .... RS) = (<>,<>,<a>) .... f 3(U,<*> .... LS,RS) 

f 3(u,<a> .... LS,<*> .... RS) = (<>,<>,<a>) .... r3(U,LS,<*> .... RS) 

r3(u,<a> .... LS,<b> .... RS) = 
if a<b then (<>,<>,<a>) .... f 3(U,LS,<b> .... RS) 

else (<>,<>,<b>) .... f 3(u,<a> .... LS,RS) 



REMARKS 

In the above equations all a and bare unequal*· 

- We define the +.operator by (X 1 , ••• ,X )li = X .• n i 

- We define the simultaneous concatenation operator A by 

cx,, ••• ,Xn) A (Y,, ••• ,Yn) = (X,AY,, ••• ,xnAYn) 

Any functJLon applied to arguments of a form not specifed in the above 

equations yields a tuple of empty histories. For instance 

f 2(<>,LS,RS,dir): (<>,<>,<>) for all LS, RS and dir. 

The third eqation describes the effect of .. 1e expand statement in 

sort. It corresponds to the following picture 

In the equation defining f 1 , one observes that f 2 does not depend on x 

and y any more. This is a direct consequence of the fact that the 

process sorn outputs these values immediately and does not use them 

any more. 

The functions written here are streamlined versions of the functions 

one would! derive by a literal translation fom the program text. We 

will comment on this later on. 

2. 1 • 3. The _proof. 

Theorem Let X = DA<*>AX' with D finite and not containing*· 

Then f 0(X) = D'A<*> where D' is an ordered permutation of D. 

This theorem will be proved using the following lemma's: 

15 
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Lemma .l [behaviour of f 3]. Let Y = D"'<*>"'Y' and Z = D""'<*>"'Z' with 

D' and D" finite and not containing*• Then f 3(x,Y,Z) = 

= (<>,<>,D"'<*>) where Dis a permutation of D'"'D 11 • 

Moreover if D' and D" are ordered, then so is D. 

Proof. Immediate by induction on ID• I+· ID" I 

Lemma~ [behaviour of f 2]. Let X = D"'<*>"'X' with D finite and not 

containing*· Then f 2(X,Y,Z,dir)~i = Di"'<*> for i = 1,2, 

where D1"'D2 is a permutation of D, and f 2(X,Y,Z,dir)+3 = 

= f 3(X' ,Y ,Z) 3. 

Proof. By induction on IDI. 

Basis IDl:O. Then we have X = <*>"'X' and by definition of f 2: 

f 2(X,Y,Z,dir) = (<*>,<*>,<>)"'f3(x',Y,Z) = 
which equals by Lemma 1: (<*>,<*>,<>)"'(<>,<>,f3(x' ,Y,Z)~3. 

Induction step • IDl>O implies X = <a>"'D""'<*>"'X'. 

Suppose without loss of generality that dir = true. 

Then f 3(X,Y,Z,dir) = {<a>,<>,<>)"'f2{D""'<*>"'X',Y,Z, dir) = 
{by induction) 

= {<a>,<>,<>)"'{D1"'<*>,D2"'<*>,f3{X',Y,Z)+3) = 
= {<a>"'D1"'<*>,D2"'<*>,f3(X'Y,Z).3), 

with o1"'D2 a permutation of D". But this implies that <a>"'D1"'o2 
is a permutation of D. 

Proof of the theorem. By induction on the length of D. 

The basic cases IDI = O and IDI = 1 are straightforward. 

So suppose IDI ~ 2, that is D = <a,b>,.D""'<*>"'X'. 

Then f 0{x) = f 1(D 11 "'<*>"'X' ,Y,Z,a,b,true)~3 

where Y = f 0(f1{D""<*>"'X' ,Y,Z,a,b,true),1) 

z = f 0{f1{D11 "<*>"'X',Y,Z,a,b,true)+2) 

Now by Lemma 2: Y = f 0(<a>"'D 1"'<*>) 

Z = f 0(<b>"'D2"'<*>) 

where o1"D2 is a permutation of D11 • 



Now we can use induction, for IDil < IDl-2 for i = 1,2. So we get 

y = DyA<*> and z = D2A<*>, 

Dy and D2 are ordered, 

DyADZ is a permutation of D. 

Again by Lemma 2: 

fo(X) = f1(D;'A<*>AX',Y,Z,a,b,true).3 = 

=<>A f 2(D"A<*>AX',DyA<*>,D2A<*>,true)~3 = 

= f 3(x',DyA<*>,D2A<*>)~3 = (by Lemma 1) 

= D"'A<*>, 

where D"' is an ordered permutation of DyADZ and thus an ordered 

permutation of D. 

2.2. Pipeline sorting 

The idea is that we don't need a tree to (merge) sort a row of 

numbers. Treesort takes a lot of processes and after the numbers are 

spread out it takes log(n) steps to get the first number out of the tree. 

Pipeline sort takes less processes: at most n/2, where n is the 

number of elements to be sorted. The process expands into a linear 

network. Each process takes in elements as long as they can be sorted in 

a constant time. The sorted sequence is put out immediately after the 

unsorted sequence has been read in. 

The program starts as follows 

C. 

B 
0 

Bis a bottom process: it merely sends an empty run to s. S reads 

numbers from i as long as it can put them into a sorted degue. If S 

17 
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cannot do that any more it creates a new S process in front of it, merges 

the input from its creator (or an empty sequence from B) with its own 

deque and sends this run to the process it just created. 

The figures below show how the file 1,5,3,2,4,* is sorted: 

B 

B B 



el::c.. 

2.2.1. The program 

(process start(int in u int outs): 

(int x; read(u,x); 

if x=* then write(s,*) /* nothing to sort*/ 

else expand 

B 

B 

create sort with u=u, r=rbot, s=s, empty=e, first:x 

create bottom with empty=e, o:rbot 

if. 

) ; 

expand. 

process bottom(int in empty int out o): 

(write(o,*)); 

19 
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process sort(int in u,r int out s,empty int first): 

(int deque deq; insert left(deq,first); 

int next; bool expanded:= false; 

repeat read(u,next); 

if next,* 

then if next i left of deq then insert left(deq,next) 

elif next l. right of deq then insert right(deq,next) 

else expand 

if. 

create sort with u=u, r:rs, s=s, empty:emp,first:next 

keep sort with u:emp, r=r, s=rs, empty:empty 

expand.; 

expanded:= true 

if. 

until (expanded or next=*); 

/*merge*/ 

repeat 

read(r,next); 

if next=* 

then while deq not empty do write(s,delete left(deq)) 

do.; write(s,*); 

else while deq not empty and next l. left of deq do 

write(s,delete left(deq)) do.; 

write(s,next) 

if. 

until next=* 

) ; 

main int in unsorted; 

) 

int out sorted; 

start(unsorted,sorted) 



2.2.2. The functions 

fo<<*>Ax> = <*> 

f 0(<a>AX) = r2(X,Y,a)i2 

where Y = f 1(f2(X,Y,a)+1) 

f 1 (X) = <*> 

For deq = <a.1, ••• ,a >, n>1, we define 
n -

f 3(<a>AX,Y,deq) = if a~a 1 then f 3(x,Y,<a>"deq) 

f 3(<*>AX,Y,deq) = 

f 4(X,<*>"'Y,deq) = 
f 4(X,<a>"Y,deq) = 

elif a~an then f 3(x,!,deqA<a>) 

else (f4(f2(X,Z,a) 1,Y,deq)+1, f 2(X,Z,a)*2) 

where Z = f 4(f2(X,Z,a)~1,Y,deq)i2. 

f 4(X,Y,deq) 

f 5(X,Y,deq) 

f 6 (X,<a>"Y,deq) 

f 5(X,Y,<>) = (<>,<*>) 

f 5(x,Y,<a>Adeq) = (<>,<a>)"f5(x,Y,deq) 

f 6(X,<a> .... Y,<>) = (<>,<a>)"f4(X,Y,<>) 

f 6(X,<a>"Y,<b>"deq) = if a~b then (<>,<b>)"f6(X,<a>"Y,deq) 

else (<>,<a>)"f4(X,Y,<b> ... deq) 

REMARKS 

- The functions f 0 , f 1 and f 2 are associated with the processes start, 

bottom and sort respectively. 

- The second line in the definition of f O corresponds to the expand 

statement in start. It can be pictured as follows: 

21 
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- The second line of the defintion of f 3 corresponds to the expand 

statement in the process sort. It can be pictured as follows: 

- deq is a double ended queue [KNUTH], i.e. a finite sequence of tokens 

(possibly empty), manipulated as a list. 

2.2.3. The proof 

Theorem. Let X = DA<*>Ax•, where Dis finite and not containing*· 

Then f 0(x) = D'A<*>, where D' is an ordered permutation of D. 

We prove the theorem using the following lemma's. 

Lemma l [behaviour of f 4]. Let Y = DA<*>AY'. Let D and deq be finite, 

ordered histories, not containing*• Then f 4(x,Y,deq) = 

(<>,D'A<*>), where D' is an ordered permutation of DAdeq. 

Proof. By induction on IDl+ldeql. In proving the induction step one 

has to consider four cases: D=<>, D=<a>AD" and deq=<>, 

D=<a>AD" and deq=<b>Adeq' with a<b, and D=<a>AD", deq=<b>Adeq' with a>b. 

We treat the latter case. 

We have f 4(X,Y,deq) = f 6(X,Y,deq) = (<>,<b>)Af6(x,Y,deq'). 

Now by definition of f 4 we also have f 4(X,Y,deq') = f 6(x,Y,deq'), 

because Y has the form Y = <a>AD"A<*>AY'. Therefore we can apply the 

induction hypothesis to derive the desired result. 

Lemma _g [behaviour of f 3]. Let X = D'A<*>Ax•, Y = D"A<*>AY', 

deq, <>, D',D",deq finite and not containing*, deq,D" 

ordered. Then f 3(x,Y,deq) = (<>,DA<*>), where Dis an ordered 

permutation of D'AD"Adeq. 



proof. By induction on ID'I. 

The proof of the theorem can now straightforwardly be given. 

2.3. Matrix multiplication. 

We present a program that multi plies square matrices. It can be 

adjusted for rectangular matrices, but then the program becomes more 

compl1cated, while the proof explodes. 

There are two input channels and one output channel. Both input 

channels contain a matrix, one in row format and one in column format. 

The program delivers the result in row format. It is also possible to 

deliver the result in column format, but we shall not deal with this 

here. 

A matrix in row (column) format is a sequence of rows (columns) 

closed by an end-of-matrix mark ( *). A row (column) is a sequence of 

numbers preceded by a begin-of-row (column) mark ($). The program does 

not check whether the matrices are square and of equal size. 

If there are n rows (columns) the net will expand (stepwise) into: 
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So there will be (essentially) 2n-1 processes, which are 1 inearly 

interconnect,ed. 

matrix: 

Every process p. . computes a diagonal of the product 
l. J 

r11 ~1i'\_.P13\. ~1"\. 

::~ ~ 
~~1~~ 
In order to compute these diagonals: 

p 11 needs row1 , ••• ,rown and 

column 1, ••• ,columnn. 

p 12 needs row 1 , ••• ,rown_ 1 and 

column2 , ••• ,columnn. 

p 1i needs row 1 , ••• ,rown-i+ 1 and 

column. , ••• ,column. 
i n 

pi 1 needs row. , ••• ,row and 
l. n 

column 1 , ••• ,column . 1 • 
n-1.+ 

The figures below show the e:itpansions for n:3. The O processes are 

duplicators. A row duplicator sends the first row to the right and the 

rest of the matrix both to the right and down. 



¥, r:3, r2, r1 .. 

* C3 
ci 
c1 
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After the diagonals have been computed, they are sent back to p 11 
such that this process can format the product matrix in row order. The 

process of sending back can for a row process be described as: 

for i 

repeat send diagonal element i to the left; 

copy (part of) row. from right to left 
1 

until* 

The above pictures are incomplete in that not all channels have been 

drawn. The picture below sketches an expansion into horizontal direction 

with all channels involved. 

---... 

r$> 
' 

/ - --

\ 

\ 
l 

I 



2.3.1. The program 

(process dup(int in A, int out B,C): 

(inti; 

while reaLd(A,i); ii* and ii$ do write(B,i) do.; 

if i=* then write(B,*); write(C,*) 

else while ii* do write(B,i); write(C,i); read(A,i) 

if. 

) ; 

write(B,*); write(C,*) 

process start(int in Mr,Mc int out result): 

(int a,b; 

read(Mr,a); read(Mc,b); 

if a=* and b=* then write(result,*) 

else expand create dup with A=Mr, B=Mr1, C:Mr2 

create dup with A=Mc, B=Mc1, C:Mc2 

if. 

) ; 

create main with Mr=Mr1, Mc=Mc1, uptriangle:upt, 

downtriangle:downt, outrows:outr, 
outcols:outc, result:result 

create rowO with incols:Mc2, inrows:outr, out:upt 

create colO with inrows:Mr2, incols:outc, out:downt 

/* This expansion can be represented graphically as follows: 

27 
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tk 

Me 

Nr 

*I 

process main(int in Mr, Mc, uptriangle, downtriangle 

int out outrows, outcols, result): 

(queue q; /* FIFO list with operations insert, delete *I 

int a,b,x; 

write(outrows,$); write(outcols,$); 

x := O; q := empty; 

while read(Mr,a); read(Mc,b); write(outrows,a); write(outcols,b); 

ai* and bi* 

do if a=~~ and b:$ then insert(q,x); x:=0 

else x := x+a*b 

if. 

do.; inse,rt(q,x); 

read(uptriangle,a); 

if a=* then write(result,$); write(result, delete(q)); 

write(result,*) 

elif al=$ then 

repeat write(result,$); 

while read(downtriangle,b); bi$ and bi* do 

write(result,b) 

write(result,delete(q)); 



if. 

); 

if. 

if b~* then - --

if. 

until b=*; 

while read(uptriangle,a); a~$ and a~• do 

write(result,a) 

do. 

write(result,delete(q)); write(result,*) 

process rowO(int in incols, inrows int out out): 

(int a,b; read(incols,a); 

if a=* then write(out,*) 

else read(inrows,b); 

if. 

) ; 

if a=$ and b:$ then 

if. 

expand create dup with A=incols, B=Mc1, C:Mc2 

expand. 

create rowO with incols:Mc2, inrows:outr, out:upt 

create row with incols=Mc1, inrows:inrows, 

intriangle:upt, outrows:outr, 

outtriangle=out 

/* The expansion step can be captured in the following picture: 

incols 

29 
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*I 

process row(int in incols, inrows, intriangle 

int out outrows, outtriangle): 

(queue q; 

int a,b,x; 

write(outrows,$); x::O; q::empty; 

while read(incols,a); read(inrows,b); ai* do 

write(outrows,b); 

if a:$ and b:$ then insert(q,x); x::O 

else x := x+a*b 

if. 

write(outrows,*); insert(q,x); 

while read(intriangle,a); ai* do 

if a:$ then write(outtriangle,$); write(outtriangle,delete(q)) 

else write(outtriangle,a) 

if. 

write(outtriangle,$); write(outtriangle, delete(q)); 

write(outtriangle,*) 

) ; 

process colO(int in inrows,incols int out out): 

(int a,b; read(inrows,a); 

if a=* then write(out,*) 

else read(incols,b); 

if a:$ and b:$ then 

expand create dup with A=inrows, B:Mr1, C:Mr2 

create colO with inrows=Mr2, incols:outc, out:downt 

create col with inrows=Mr1, incols=incols, 

intriangle:downt, outcols:outc, 

outtriangle:out 



expand. 

if. 

if. 

) 

/* We have the following picture corresponding to the expansion: 

iV'lcols 

inrot..)S 

*I 

process col(int in inrows, incols, intriangle 

int out outcols, outtriangle): 

(queue q; int a,b,x; 

q := emp,!I; x := O; write(outcols,$); 

while read(inrows,a); read(incols,b); a~* do 

write(outcols,b); 

if a=$ and b:$ then insert(q,x); x:=0 

else x := x+a*b 

if. 

write(outcols,*); insert(q,x); 

write(outtriangle,$); 

repeat read(intriangle,a); 

if a=$ or a=* then 

write(outtriangle,delete(q)) 

if.; write(outtriangle,a) 

until a=*; 

) ; 
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main 

int in mate, matr, 

int out matres, 

start(matr,matc,matres) 

2.3.2. The functions 

- d 0 
(corresponds to process dup): 

ct 0 (<a>-A) = (<a>,<>)Ad 0 (A) 

d (<*>.A) 
0 = (<*>,<*>) 

ct 0 (<$>.A) = (<$>,<$>).d 1(A) 

ct 1(<a>.A) = (<a>,<a>)·ct 1(A) 

ct 1 (<$>.A) = (<$>,<$>)•ct 1(A) 

d (<*>.A) 
1 = (<*>,<*>) 

- m0 (corresponds to process start): 

m0 (<*>.A,<*>.B) = <*> 

m0 (<$>"'A,<$>.B) = m1(ct 0 (A)l1,ct 0 (B)~1,c,n,o,0)+3 

where c = r 0 (ct 0 (B) 2,<$>"'m1(ct 0 (A)11,ct 0 (B)t1,c,n,o,<>)i1) 

D = c0 (ct 0 (A) 2,<$>"'m1(ct 0 (A)t1,ct 0 (B)~1,c,n,o,<>)~2) 

- m1 (corresponds to process main): 

m1(<a>"'A,<b>.B,C,D,x,q) = (<a>,<b>,<>) • m1(A,B,C,D,x+ab,q) 

m1(<$>"'A,<$>.B,C,D,x,q) = (<$>,<$>,<>) • m1(A,B,C,D,O,<x>"'q) 

m1(<*>.A,<*>•B,C,D,x,q) = (<*>,<*>,<>) • m2(A,B,C,D,<x>"'q) 

m2 (A,B,<*>AC,<*>AD,qA<x>) = (<>,<>,<$,x,*>) 

m2 (A,B,<$>AC,<$>AD,qA<x>) = (<>,<>,<$,x>) A m3(A,B,C,D,q) 

m3(A,B,<c>·c,D,q) = (<>,<>,<c>) • m3(A,B,C,D,q) 

m3(A,B,<*>•c,D,q) = 

= m3(A,B,<$>·c,D,q) = (<>,<>,<$>) • m4(A,B,C,D,q) 

m4(A,B,C,<d>"'D,q) = (<>,<>,<d>) • m4(A,B,C,D,q) 

m4(A,B,C,<$>"'D,q·<x>) = (<>,<>,<x>) • m3(A,B,C,D,q) 

m4(A,B,C,<*>·o,q·<x>) = (<>,<>,<x,*>) 



- r 0 (corresponds to process rowO) 

r 0(<*>AA,B) = <*> 

r 0(<$>AA,<$>AB) = r 1(d0(A)i1,B,c,o,<>)l2) 

where c = r 0(d0(A)i2,<$>Ar1(d0 (A)•1,B,c,o,<>)f1) 

- r 1 (corresponds to process row) 

r 1(<a>AA,<b>AB,C,x,q) = (<b>,<>) A r 1(A,B,C,x+ab,q) 

r 1(<$>AA,<$>AB,C,x,q) = (<$>,<>) A r 1(A,B,c,o,<x>Aq) 

r 1(<*>AA,B,C,x,q) = (<*>,<>) A r 2(A,B,C,<x>Aq) 

r 2(A,B,<c>AC,q) = (<>,<c>) A r 2(A,B,C,q) 

r 2(A,B,<$>AC,q) = (<>,<$,x>) A r 2(A,B,C,q) 

r 2(A,B,<*>AC,q) = (<>,<$,x,*>) 

- c0 (corresponds to co10) 

c0(<*>AA,B) = <*> 

c0(<$>AA,<$>AB) = c1(d0(A)i1,B,c,o,<>)~2 

where c = c0(d0(A)+2,<$>Ac 1(d 0(A)~1,B,c,o,<>)~1) 

- c 1 (corresponds to col) 

c 1(<a>AA,<b>AB,C,x,q) = (<b>,<>) A c1(A,B,C,ab+x,q) 

c 1(<$>AA,<$>AB,C,x,q) = (<$>,<>) A c1(A,B,c,o,<x>Aq) 

c1(<*>AA,B,C,x,q) =(<*>,<>)A c2(A,B,C,<x>Aq) 

c2(A,B,C,q) = (<>,<$>) A c3(A,B,C,q) 

c3(A,B,<c>AC,q) = (<>,<c>) A c3(A,B,C,q) 

c3(A,B,<$>AC,qA<x>) = (<>,<x,$>) A c3(A,B,C,q) 

c3(A,B,<*>AC,qA<x>) = (<>,<x,*>) 

2.3.3. The proof 

As before we will state some lemma's which will then be used to 

prove the main theorem. But first a definition which supplies a notation 

that can be used to describe the data that will travel along the 

channels. This data will always have a prescribed format: a sequence of 

rows of integers (elements from a matrix), seperated and possibly 

preceded by a $-sign and terminated by a *-symbol. 
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Definition. Suppose R. are finite histories not containing$ or*• Then 
1 

[R 1, ••• ,Rn] is defined as follows: 

• <*> if n:O (that is(]=<*>) • 

• <$>AR 1A[R 2 , ••• ,Rn] if nl1• 

Furthermore we define {R 1, ••• ,Rn J : = R/ [R2, ••• ,Rn J (nl 1). 

If the above notation will be used then we will always implicitly 

assume that the histories involved do not contain $ or *, and will be 

finite. Lemma 1 describes the behaviour of d0 • This operator copies its 

input to its first output channel, and it copies all but the first row 

(column) of the input to its second output channel. 

Lemma .l· Let A = u,, ... ,AnrA' (nl1). Then 

d0(A) = ({A 1, ••• ,An],[A2 ••• ,An]). 

Proof. 1. d0(A) = (A 1,<>) A d0([A2 , ••• ,An]AA') can be proved by induction 

on length(A 1). 

2. The Lemma then follows by induction on k. 

Lemma 2 describes the behaviour of r 2 • This operator collects the 

results from its right neighbour. On this channel it receives an upper 

triangle of the product matrix. The operator then adds the diagonal 

elements which it has computed to it and outputs a bigger upper triangle. 

Lemma~- Let klO. r 2(A,B,[c 1, ••• ,ckJ,<xk+i'···,x,>) = 

= (<>,{<x,>Ac,, ••• ,<xk>Ack,<xk+1>]). 

Proof. 1w r2(A,B,{c,, ••• ,ck],q) = {<>,c,> A r2(A,B,[C2,···,ck],q) 

for k>1. This can be proved by induction on length(C 1). 

2. The lemma follows by induction on k. 

The next lemma describes the behaviour of c2• This operator acts 

like r 2.• Notice however the difference in the format. 



Lemma 1· Let k20· c2(A,B,[c2, ••• ,ck+l],<xk+l'"""'x1>) = 

= (<>,[<x,>,C2A<x2>, ••• ,ck+1A<xk+1>]). 

Proof. 1. c3(A,B,{c2 , ••• ,ck],q) = (<>,c2)Ac3(A,B,[c3, ••• ,ck],q) (k22) 

by induction on length(C2). _ 

2. c3(A,B,[C2,···,ck+1],<xk+1'"""'x,>) = 

= (<>,{<x1>,c2A<x2>, ••• ,ck+lA<xk+l>]) (k20) by induction 

on k. 

3. The lemma now follows immediately. 

Lemma 4 describes the behaviour of m2• This operator collects the 

upper triangle above the main diagonal from the product matrix, and the 

triangle below this diagonal. It then combines it with the values on the 

main diagonal into the product matrix in row format. 

Lemma~- Let k21- m2(A,B,[c,, ••• ,ck],[D2,···,Dk+1],<xk+1'"""'x1>) = 

= (<>,<>,[R 1, ••• ,Rk+l]), where R1 = <x1>Ac 1; 

for 2<i<k: R. = D.A<x.>ACi; Rk 1 = Dk 1A<xk 1>. 
- - 1 1 1 + + + 

In case k:O we obtain (<>,<>,[<x 1>]) as an answer. 

Proof. 1. The case k:O is immediate. 

2. For k>1 we have m3(A,B,{c 1, ••• ,ck],D,q) = 

= (<>,<>,c,> A m3(A,B,[c2, ••• ,ckJ,D,q) 

by induction on length(C 1). 

3. Similarly we have for k21 m4(A,B,C,{D1, ••• ,Dk],q) = 

= (<>,<>,D 1) A m4(A,B,C,[D2 , ••• ,Dk],q). 

4. For k21 we have by induction on k: 

m3(A,B,{~,, ••• ,ck],{D2,···,Dk+1],<xk+1'"""'x2>) = 

= (<>,<>,{c,,D2A<x2>AC2,···,DkA<xk>ACk,Dk+1A<xk+1>]) 

The next lemma describes the behaviour of r 1• This operator first 

forms an upper diagonal, stores this in its queue q, also passes the 

first n rows to its right neighbour, and finally acts like r 2• The 

process row, corresponding to this operator, will always be started with 

n=m-1. 
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The history B' which appears in the lemma is needed because 

otherwise the induction argument in lemma 6 would not work. 

Lemma 5. Let 1<n<m, A:{A 1, ••• ,A ), B={B1, ••• ,B ]"'B', IAil=IB.I. 
---- -- n . m i 

Let <a 1, ••• ,ak>.<b1, ••• ,bk> be the vector product 

a 1 b 1 + • • • +ak bk • 

Then r 1(A,B,C,O,q) = ({B 1, ••• ,Bn),<>) "r2(<>,B",C,<AnBn,•••,A1B1>"'q) 

for some B". 

Proof. 1. 1inim and IA 11=1B11 implies: 

r 1({A 1, ••• ,An),{B1, ••• ,Bm)"'B',x,q) = 

= (B 1,<>) "r1([A2 , ••• ,An),[B2, ••• ,Bm)"B' ,x+A 1B1,q). 

This can be proved with induction on IA 11. 

2. The lemma then follows by induction on n. 

We now get a lemma which describes the behaviour of r 0 • This 

operator takes the last n columns of the input matrix in column form, and 

the first m rows from the input matrix in row format (the corresponding 

process will only be started with m=n+1). The operator then computes the 

upper triangle of the product matrix consisting of n diagonals. 

Lemma 6. Let O<n<m, IA. l=IB. I. Then r 0 ([A1, ••• ,A ),[B1, ••• ,B ]"B') = 
--- - - - i l. n m 

= [R 1, ••• ,R ], where Ri = <AiB., ••• ,A B.>. n l. n i 

Proof. By induction on n. The basic case n=O is immediate, so assume n>1. 

Define A= {A 1, .•. ,An)' B = {B1, •• ,Bm). 

ro(<$>"A,<$>"B"B') = r,<do(A)i1,B"B' ,C,O,<>)i2 = (lemma 1) 

= r 1CA,B"B',c,o,<>)~2 = (*), 

where c =_r0(d0(A)~2,<$>"r 1(d0(A) 1,B"B',c,o,<>)~1) = (lemma 1) 

= r 0([A2 , ••• ,An),<$>"r1(A,B"B',c,o,<>)l1) = (lemma 5) 

= ro([A2,··,An],<$>"B"r2(<>,B",C,<AnBn'"""'A1B,>)•1> = 

= r 0([A2, ••• ,An),[B1, ••• ,Bm)"X) = (ind) 

= [R2,•••,Rn)' 

where Ri: <AiBi_ 1, ••• ,AnBi_,>. 



So(*)= r,u1,BAB',[R2, ... ,Rn),O,<>)i2 = (lemma 5) 

=<>A r 2(<>,B"',[R2, ... ,Rn),<AnBn,···,A 1B1>) 2 = (lemma 2) 

= [R 1' , ••• ,R'], where R~=<A.B.>AR. ,=<A.B. , ••• ,AB.> 
n 1 1 1 1+ 1 1 n 1 

R'=<A B > n n n 

Lemma's 7 and 8 are the counterparts of 5 and 6 but now for c 1 and 

Lemma 1· Let 1~n~m, A={A 1, ••• ,An)' B={B1, ••• ,Bm)AB', IAil=IBil. Then 

c 1(A,B,c,o,q) = ({B 1, ••• ,Bn),<>) • c2(<>,B",C,<AnBn,···,A,B1>Aq). 

Proof. Like lemma 5. 

Lemma 8. Let O<n<m, IA.1:1B.I. Then c0 ([A 1 , ••• ,A ],[B1 , ••• ,B ]) = 
---- -- 1 1 n m 

: [R 1, ••• ,Rn)' where Ri = <AiB1, ••• ,AiBi>. 

Proof. Like lemma 6. 

Lemma 9 describes the behaviour of m1• This operator has as inputs 

the input matrices of the whole program. It computes the main diagonal of 

the product matrix in q, and then acts like m2• 

Lemma 9. Let n>1, A={A 1, ••• ,A ], B={B1, ••• ,B ], IA.l=IB.I. Then 
--- - n n 1 1 

m1(A,B,C,D,O,q) = (A,B,<>) A m2(<>,<>,C,D,<AnBn,•••,A 1B1>Aq). 

Proof. Like lemma 5. 

Theorem [behaLviour of m0J. Let n2_0, IA. l=IB. I. Then 
1 1 

m0([A 1, ••• ,An],[B 1, ••• ,Bn]) = [R 1, ••• ,Rn]' 

where R1 = <A.B 1, ••• ,A.B >. 
1 1 n 

Proof. The case n:0 is immediate. Now suppose n2_1. Define 

A={A 1, ••• ,An]' B={B1, ••• ,Bn]. 

m0(<$>.A,<$>"'B) = m1(d 0(A)t1,d0(B)i1,c,D,0,<>)+3 = (lemma 1) 

= m1(A,B,C,D,O,<>)i3 = (*). 
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c = r 0(d0(B)i2,<$>Am1(d0(A)t1,d0(B)l1,c,n,o,<>)i1) = (lemma 1) 

= r 0 ([B2, ••• ,Bn],<$>AAAm2(<>,<>,C,D,<AnBn'"""'A 1B1>)i1) = (lemma 9) 

= r 0([B2, ••• ,Bn],(A 1, ••• ,An]AX) = (lemma 6) 

= [ T 1 ' • • • 'T n-1 ] ' 
where Ti= <AiBi+1, ••• ,AiBn>. 

Quite analogously D = [s2, ••• ,Sn]' where Si= <AiB1, ••• ,AiBi_ 1>. 

Combining this we get (by lemma 9) 

(*)=<>A m2(<>,<>,[T,, ••• ,Tn-1],(S2, ••• ,sn]'<AnBn'"""'A1B1>)~3. 
We now apply lemma 4. There are two cases: 

A. n:1. 

B. n>2. 

R1 
R. 

l. 

R n 

Then(*)= m2(<>,<>,<*>,<*>,<A 1B1>)i3 = [<A1B1>] 

Then(*)= [R 1, ••• ,Rn], where 

= <A 1B1>AT 1 = <A 1B1>A<A 1B2, ••• ,A 1Bn> = <A 1B1, ••• ,A 1Bn>. 

= siA<AiBi>ATi = <AiB,, ••• ,AiBi_,>A<AiBi>A<AiBi+1'···,AiBn> 
= s A<A B >=<A B,, ••. ,A B ,>A<A B >. n n n n n n- n n 

3. CONCLUSIONS AND FUTURE DIRECTIONS ,.·? OUR RESEARCH 

We have given two sorting algorithms and a matrix multiplication 

algorithm, programmed in Kahn's language. We have proven these programs 

correct. 

At this point we can make several remarks. First of all, the proofs 

are long because they have to deal with many details. Secondly, they are 

not very appealing to the intuition because we have introduced an 

intermediate stage between the program and its proof, namely the 

functions. In the third place, we did not really prove the programs 

correct, but we have proved the correctness of the functions which we 

have derived from the programs. We claimed that the functions provided 

the meanings of the corresponding programs but we did not specify how one 

obtains functions from programs, neither did we justify our claim. In 

fact we have been quite loose there. Kahn [KAHN74] alludes to the method 

of McCarthy but he does not specify this further. It is not clear how to 



apply this method, once expand statements, containing keeps creep in. 

What clearly is needed is a formal semantics of the language, that is we 

need a meaning function ~ which takes a program and delivers the 

corresponding function. At the moment we are constructing such a 

semantics. 

The proof of the program could very wen be stated more intuitively 

if we had a Hoare system for the language. In that case we could prove 

properties of the language immediately from the program text. This is to 

be contrasted to the two step process which we have used in this paper. 

Presently we are trying to find such Hoare like proof rules and axioms. 

Once this has been obtained we can compare proofs like the ones given 

here with direct proofs using Hoare rules. 

Another drawback of the semantics used in this paper is that, for 

instance, the meaning of our paradigm "hello"-"goodbye" program from 

section 1. 1 can only state that infinite sequences of "hello"s and 

"goodbye"s will travel along the channels. However, it is impossible to 

derive that the "hello"s and "goodbye"s are interleaved, which might be 

the very purpose of programs like these. In our Hoare system in 

development it will be possible to prove properties like these. 

Due to the VLSI technology processors have become relatively cheap. 

It is therefore promising to let processes work together, and Kahn's 

language seems to be useful to state such algorithms. It is needed to 

find efficient algorithms which can be used in such a set up, and we will 

continue to work on this. 
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