73 research outputs found
Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in a Bose-Einstein condensate
Many-particle entanglement is a fundamental concept of quantum physics that
still presents conceptual challenges. While spin-squeezed and other
nonclassical states of atomic ensembles were used to enhance measurement
precision in quantum metrology, the notion of entanglement in these systems
remained controversial because the correlations between the indistinguishable
atoms were witnessed by collective measurements only. Here we use
highresolution imaging to directly measure the spin correlations between
spatially separated parts of a spin-squeezed Bose-Einstein condensate. We
observe entanglement that is strong enough for Einstein-Podolsky-Rosen
steering: we can predict measurement outcomes for non-commuting observables in
one spatial region based on a corresponding measurement in another region with
an inferred uncertainty product below the Heisenberg relation. This could be
exploited for entanglement-enhanced imaging of electromagnetic field
distributions and quantum information tasks beyond metrology
A*Magazine: *Art *Africa *Analysis
A* Magazine â A* standing for Art, Africa and Analysis â is the official publication of the ECAS (7th European Conference on African Studies) arts and culture programme. It takes the form of a once-off newspaper that, in addition to providing a programme overview, also features a broad spectrum of articles, analyses, features, interviews, letters and poems related to the many questions and issues raised during these events
Imaging of microwave fields using ultracold atoms
We report a technique that uses clouds of ultracold atoms as sensitive,
tunable, and non-invasive probes for microwave field imaging with micrometer
spatial resolution. The microwave magnetic field components drive Rabi
oscillations on atomic hyperfine transitions whose frequency can be tuned with
a static magnetic field. Readout is accomplished using state-selective
absorption imaging. Quantitative data extraction is simple and it is possible
to reconstruct the distribution of microwave magnetic field amplitudes and
phases. While we demonstrate 2d imaging, an extension to 3d imaging is
straightforward. We use the method to determine the microwave near-field
distribution around a coplanar waveguide integrated on an atom chip.Comment: 11 pages, 4 figure
Coherent manipulation of ultracold atoms with microwave near-fields
The spectacular progress in the field of ultracold quantum gases is intimately connected with the availability of sophisticated techniques for quantum-level control of internal states, motional states, and collisional interactions. Atom chips provide such control in compact, robust, and scalable setups, which makes them attractive for both applications and fundamental studies.
In this thesis I report on experiments that use a new method for coherent manipulation of ultracold atoms. The method is based on microwave near-fields, provided by a waveguide structure that is fully integrated on an atom chip. We generate microwave near-field potentials that combine the versatility of optical traps with the robustness and tailorability of static magnetic microtraps. These potentials depend on the internal atomic state, and we use them for state-selective splitting of Rb Bose-Einstein condensates. We show for the first time combined coherent manipulation of internal and motional states on an atom chip, realizing a trapped-atom interferometer with internal state labeling of the interferometer paths. Moreover, we use microwave near-field potentials for the preparation of spin-squeezed states for quantum-enhanced metrology through controlling state-dependent collisional interactions. In addition, very promising proposals exist for the implementation of a quantum phase gate using these potentials.
Measuring microwave fields is important for engineering of microwave devices as well as in science, e.g. to characterize the field homogeneity in the interaction regions of an atomic clock. We develop a novel technique that uses clouds of uncondensed ultracold atoms as sensitive, tunable and non-invasive probes for microwave field imaging with micrometer spatial resolution. The microwave magnetic field components drive Rabi oscillations on atomic hyperfine transitions whose frequency can be tuned with a static magnetic field. Readout is accomplished using state-selective absorption imaging. Quantitative data extraction is simple and it is possible to reconstruct the amplitudes and phases of the different microwave magnetic field components. While we demonstrate 2D imaging, an extension to 3D imaging is straightforward. We use the method to determine the microwave near-field distribution around the on-chip waveguide and reconstruct the corresponding current distribution. For our experimental parameters, the method provides a microwave magnetic field sensitivity of 0.2 mG, which can even be improved further with variants discussed. The experiments presented in this thesis open the path for the realization of portable quantum-enhanced interferometer devices, the implementation of a quantum phase gate as well as for a new generation of microwave field sensors.Der spektakulÀre Fortschritt auf dem Gebiet der ultrakalten Quantengase beruht auf der Kontrolle von internen- und Bewegungs-QuantenzustÀnden sowie Kollisions-Wechselwirkungen. Atomchips ermöglichen solche Kontrolle von Quantensystemen in kompakten, robusten und skalierbaren Aufbauten.
In dieser Dissertation berichte ich ĂŒber Experimente auf einem Atomchip mit integrierten Wellenleitern, deren Mikrowellen-Nahfelder als eine neue Methode zur kohĂ€renten Manipulation von ultrakaltem Rubidium verwendet werden. Mikrowellen-Nahfeldpotentiale vereinen die FlexibilitĂ€t und Vielseitigkeit von optischen Fallen mit der Robustheit und Konfigurierbarkeit von statischen Mikrofallen. Die Mikrowellenpotentiale hĂ€ngen vom internen atomaren Hyperfeinzustand ab, was wir fĂŒr die zustandsselektive Aufspaltung von Bose-Einstein Kondensaten verwenden. Wir demonstrieren erstmalig die kombinierte kohĂ€rente Manipulation von internen- und Bewegungs-ZustĂ€nden in einem Atominterferometer auf einem Atomchip, mit Kennzeichnung der Interferometerarme durch interne HyperfeinzustĂ€nde. Weiter verwenden wir die Nahfeld-Potentiale um via zustandsabhĂ€ngiger Kollisions-Wechselwirkungen gequetschte Spin-ZustĂ€nde fĂŒr die Quanten-Metrologie herzustellen. Ausserdem existieren sehr vielversprechende VorschlĂ€ge, mittels dieser Potentiale ein Quanten-Phasengatter zu realisieren.
Das Vermessen von Mikrowellen-Feldern ist bedeutsam fĂŒr die Entwicklung von Mikrowellen-Komponenten sowie in der Wissenschaft, z.B. zur Vermessung der Feld-HomogenitĂ€t in den Wechselwirkungs-Regionen einer Atomuhr.
Wir haben eine Technik entwickelt, die Wolken von ultrakalten Atomen als empfindliche, abstimmbare, und nichtinvasive Sonden fĂŒr das Abbilden von Mikrowellen-Feldverteilungen mit einer rĂ€umlichen Auflösung im Mikrometerbereich benutzt. Die Mikrowellenmagnetfeld-Komponenten treiben Rabi-Oszillationen zwischen atomaren HyperfeinzustĂ€nden, deren Resonanzbedingung mittels eines statischen Magnetfelds abgestimmt werden kann. Das Auslesen geschieht mit zustandsselektiver Absorptionsabbildung. Eine quantitative Auswertung ist einfach und es ist möglich die Verteilung der verschiedenen Polarisationskomponenten sowie Phasen des Mikrowellenmagnetfelds zu rekonstruieren. Die Mikrowellen-Nahfeldverteilung um einen der Wellenleiter auf dem Atomchip wird vermessen und die damit korrespondierende Stromverteilung auf dem Wellenleiter wird rekonstruiert. FĂŒr unsere experimentellen Parameter können wir Amplituden des Mikrowellenmagnetfelds von bis zu 0.2 mG messen.
Die vorgestellten Experimente sind Basis fĂŒr die Realisierung transportabler, auf VerschrĂ€nkung basierender Quanten-Interferometer, Quanten-Phasengatter und eines neuen Verfahrens zur Charakterisierung von Mikrowellen-Feldverteilungen
Simple microwave field imaging technique using hot atomic vapor cells
We demonstrate a simple technique for microwave field imaging using alkali
atoms in a vapor cell. The microwave field to be measured drives Rabi
oscillations on atomic hyperfine transitions, which are detected in a spatially
resolved way using a laser beam and a camera. Our vapor cell geometry enables
single-shot recording of two-dimensional microwave field images with 350 {\mu}m
spatial resolution. Using microfabricated vapor cell arrays, a resolution of a
few micrometers seems feasible. All vector components of the microwave magnetic
field can be imaged. Our apparatus is simple and compact and does not require
cryogenics or ultra-high vacuum
Atom chip based generation of entanglement for quantum metrology
Atom chips provide a versatile `quantum laboratory on a microchip' for
experiments with ultracold atomic gases. They have been used in experiments on
diverse topics such as low-dimensional quantum gases, cavity quantum
electrodynamics, atom-surface interactions, and chip-based atomic clocks and
interferometers. A severe limitation of atom chips, however, is that techniques
to control atomic interactions and to generate entanglement have not been
experimentally available so far. Such techniques enable chip-based studies of
entangled many-body systems and are a key prerequisite for atom chip
applications in quantum simulations, quantum information processing, and
quantum metrology. Here we report experiments where we generate multi-particle
entanglement on an atom chip by controlling elastic collisional interactions
with a state-dependent potential. We employ this technique to generate
spin-squeezed states of a two-component Bose-Einstein condensate and show that
they are useful for quantum metrology. The observed 3.7 dB reduction in spin
noise combined with the spin coherence imply four-partite entanglement between
the condensate atoms and could be used to improve an interferometric
measurement by 2.5 dB over the standard quantum limit. Our data show good
agreement with a dynamical multi-mode simulation and allow us to reconstruct
the Wigner function of the spin-squeezed condensate. The techniques
demonstrated here could be directly applied in chip-based atomic clocks which
are currently being set up
Inductively guided circuits for ultracold dressed atoms
Recent progress in optics, atomic physics and material science has paved the way to study quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply connected traps for cold atoms can be prepared by combining inhomogeneous distributions of DC and radio-frequency electromagnetic fields with optical fields that require complex systems for frequency control and stabilization. Here we propose a flexible and robust scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the âdressingâ of hyperfine sublevels of the atomic ground state, where the dressing field is spatially modulated by inductive effects over a micro-engineered conducting loop. Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide operation relies entirely on controlling static and low-frequency fields in the regimes of radio-frequency and microwave frequencies. This novel trapping scheme can be implemented with current technology for micro-fabrication and electronic control
A high-speed tunable beam splitter for feed-forward photonic quantum information processing
We realize quantum gates for path qubits with a high-speed,
polarization-independent and tunable beam splitter. Two electro-optical
modulators act in a Mach-Zehnder interferometer as high-speed phase shifters
and rapidly tune its splitting ratio. We test its performance with heralded
single photons, observing a polarization-independent interference contrast
above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is
2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate
of path-encoded qubits and a two-qubit gate via measurement-induced interaction
between two photons
- âŠ