425 research outputs found

    713-4 Inhibition of Vascular Superoxide Production in Hypercholesterolemic Rabbit Aorta by L-Arginine Contributes to Restored Endothelium-dependent Relaxation

    Get PDF
    Chronic oral administration of L-arginine (L-ARG) has been shown to enhance endothelial function in cholesterol (CHOL)-fed rabbits and to reduce atherogenesis. We investigated whether modulation of endogenous NO production (as assessed by urinary NO3-excretion) by L-ARG and the inhibitor of NO synthesis, L-NAME, affects vascular superoxide (O2-) production in hypercholesterolemic rabbits. Phorbol-myristate-acetate (PMA)-stimulated O2-production from isolated aortic rings was increased in rabbits given CHOL (+159±28%) or CHOL + L-NAME (+149±37%) as compared to controls (-22±7%), and endothelium-dependent relaxations by acetylcholine were diminished in both groups. In aortic rings from rabbits given CHOL + L-ARG, PMA-induced O2-production was restored to control levels (+14±17%; p<0.05), and endothelium-dependent cholinergic relaxations were also partly restored. Urinary NO3-excretion decreased in all animals fed a CHOL-enriched diet (p<0.01). As NO inactivated by O2-is also oxidized to NO3-, this indicates a decreased endothelial production of NO. NO3-excretion was further decreased by L-NAME (p<0.05 vs. CHOL), and partly restored by L-ARG (p<0.05). We conclude that both a decreased production of NO and an enhanced breakdown of NO by O2-contribute to the diminished biological activity of endothelial NO in hypercholesterolemia. L-ARG restores endothelial function by enhancing NO formation and by protecting NO from early breakdown by O2-

    Restoring vascular nitric oxide formation by l-arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive disease

    Get PDF
    AbstractBackground. Administration of l-arginine improves nitric oxide (NO) formation and endothelium-dependent vasodilation in atherosclerotic patients.Objectives. We investigated in this double-blind, controlled study whether prolonged intermittent infusion therapy with l-arginine improves the clinical symptoms of patients with intermittent claudication, as compared with the endothelium-independent vasodilator prostaglandin E1, and control patients.Methods. Thirty-nine patients with intermittent claudication were randomly assigned to receive 2 × 8 g l-arginine/day, or 2 × 40 μg prostaglandin E1(PGE1)/day or no hemodynamically active treatment, for 3 weeks. The pain-free and absolute walking distances were assessed on a walking treadmill at 3 km/h, 12% slope, and NO-mediated, flow-induced vasodilation of the femoral artery was assessed by ultrasonography at baseline, at 1, 2 and 3 weeks of therapy and 6 weeks after the end of treatment. Urinary nitrate and cyclic guanosine-3′, 5′-monophosphate (GMP) were assessed as indices of endogenous NO production.Results. l-Arginine improved the pain-free walking distance by 230 ± 63% and the absolute walking distance by 155 ± 48% (each p < 0.05). Prostaglandin E1improved both parameters by 209 ± 63% and 144 ± 28%, respectively (each p < 0.05), whereas control patients experienced no significant change. l-Arginine therapy also improved endothelium-dependent vasodilation in the femoral artery, whereas PGE1had no such effect. There was a significant linear correlation between the l-arginine/asymmetric dimethylarginine (ADMA) ratio and the pain-free walking distance at baseline (r = 0.359, p < 0.03). l-Arginine treatment elevated the plasma l-arginine/ADMA ratio and increased urinary nitrate and cyclic GMP excretion rates, indicating normalized endogenous NO formation. Prostaglandin E1therapy had no significant effect on any of these parameters. Symptom scores assessed on a visual analog scale increased from 3.51 ± 0.18 to 8.3 ± 0.4 (l-arginine) and 7.0 ± 0.5 (PGE1; each p < 0.05), but did not significantly change in the control group (4.3 ± 0.4).Conclusions. Restoring NO formation and endothelium-dependent vasodilation by l-arginine improves the clinical symptoms of intermittent claudication in patients with peripheral arterial occlusive disease

    Super-resolution imaging and estimation of protein copy numbers at single synapses with DNA-PAINT

    Get PDF
    In the brain, the strength of each individual synapse is defined by the complement of proteins present or the "local proteome." Activity-dependent changes in synaptic strength are the result of changes in this local proteome and posttranslational protein modifications. Although most synaptic proteins have been identified, we still know little about protein copy numbers in individual synapses and variations between synapses. We use DNA-point accumulation for imaging in nanoscale topography as a single-molecule super-resolution imaging technique to visualize and quantify protein copy numbers in single synapses. The imaging technique provides near-molecular spatial resolution, is unaffected by photobleaching, enables imaging of large field of views, and provides quantitative molecular information. We demonstrate these benefits by accessing copy numbers of surface AMPA-type receptors at single synapses of rat hippocampal neurons along dendritic segments

    A study of endothelial function and circulating asymmetric dimethylarginine levels in people with Type 1 diabetes without macrovascular disease or microalbuminuria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asymmetric dimethylarginine (ADMA) is a competitive inhibitor of endothelial nitric oxide synthase (eNOS) that is associated with endothelial dysfunction, and is a risk marker for cardiovascular disease, a significant problem in Type 1 diabetes. The aim of the present study was to measure circulating ADMA, and define its association with endothelial dysfunction and endothelial markers in people with Type 1 diabetes with low likelihood of macrovascular disease.</p> <p>Methods</p> <p>Sixty-one young people with Type 1 diabetes without macrovascular disease or nephropathy and 62 healthy volunteers underwent brachial artery flow-mediated dilatation (FMD) and assay of plasma ADMA and adhesion molecules.</p> <p>Results</p> <p>Age, gender, BMI, lipid profile and renal function were similar in the two groups. People with Type 1 diabetes had impaired FMD compared to healthy controls (5.0 ± 0.4 vs 8.9 ± 0.4%; p < 0.001). Plasma ADMA levels were significantly lower in the people with diabetes compared to healthy controls (0.52 ± 0.12 vs 0.66 ± 0.20 μmol/l, p < 0.001). Plasma ICAM-1, E-selectin and PAI-1 levels were significantly higher in people with diabetes compared to healthy controls (median 201 (IQR 172–226) vs 180 (156–216) μg/l, p = 0.027; 44.2 (32.6–60.9) vs. 33.1 (22.4–51.0) μg/l; p = 0.003 and 70.8 (33.3–85.5) vs 46.3 (23.9–76.8) μg/l, p = 0.035). Plasma ADMA and VCAM-1 levels were positively correlated (r = 0.37, p = 0.003) in people with diabetes. There was no correlation between the plasma ADMA and FMD.</p> <p>Conclusion</p> <p>ADMA levels are not associated with endothelial dysfunction in young adults with Type 1 diabetes without microalbuminuria or known macrovascular disease. This suggests that the impaired endothelial function in these individuals is not a result of eNOS inhibition by ADMA.</p

    Bleaching Herbicide Flurtamone Interferes with Phytoene Desaturase

    Full text link

    Validated SNPs for eGFR and their associations with albuminuria

    Get PDF
    Albuminuria and reduced glomerular filtration rate are manifestations of chronic kidney disease (CKD) that predict end-stage renal disease, acute kidney injury, cardiovascular disease and death. We hypothesized that SNPs identified in association with the estimated glomerular filtration rate (eGFR) would also be associated with albuminuria. Within the CKDGen Consortium cohort (n= 31 580, European ancestry), we tested 16 eGFR-associated SNPs for association with the urinary albumin-to-creatinine ratio (UACR) and albuminuria [UACR >25 mg/g (women); 17 mg/g (men)]. In parallel, within the CARe Renal Consortium (n= 5569, African ancestry), we tested seven eGFR-associated SNPs for association with the UACR. We used a Bonferroni-corrected P-value of 0.003 (0.05/16) in CKDGen and 0.007 (0.05/7) in CARe. We also assessed whether the 16 eGFR SNPs were associated with the UACR in aggregate using a beta-weighted genotype score. In the CKDGen Consortium, the minor A allele of rs17319721 in the SHROOM3 gene, known to be associated with a lower eGFR, was associated with lower ln(UACR) levels (beta = −0.034, P-value = 0.0002). No additional eGFR-associated SNPs met the Bonferroni-corrected P-value threshold of 0.003 for either UACR or albuminuria. In the CARe Renal Consortium, there were no associations between SNPs and UACR with a P< 0.007. Although we found the genotype score to be associated with albuminuria (P= 0.0006), this result was driven almost entirely by the known SHROOM3 variant, rs17319721. Removal of rs17319721 resulted in a P-value 0.03, indicating a weak residual aggregate signal. No alleles, previously demonstrated to be associated with a lower eGFR, were associated with the UACR or albuminuria, suggesting that there may be distinct genetic components for these trait

    A previously functional tetracycline-regulated transactivator fails to target gene expression to the bone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tetracycline-controlled transactivator system is a powerful tool to control gene expression <it>in vitro </it>and to generate consistent and conditional transgenic <it>in vivo </it>model organisms. It has been widely used to study gene function and to explore pathological mechanisms involved in human diseases. The system permits the regulation of the expression of a target gene, both temporally and quantitatively, by the application of tetracycline or its derivative, doxycycline. In addition, it offers the possibility to restrict gene expression in a spatial fashion by utilizing tissue-specific promoters to drive the transactivator.</p> <p>Findings</p> <p>In this study, we report our problems using a reverse tetracycline-regulated transactivator (rtTA) in a transgenic mouse model system for the bone-specific expression of the Hutchinson-Gilford progeria syndrome mutation. Even though prior studies have been successful utilizing the same rtTA, expression analysis of the transactivator revealed insufficient activity for regulating the transgene expression in our system. The absence of transactivator could not be ascribed to differences in genetic background because mice in a mixed genetic background and in congenic mouse lines showed similar results.</p> <p>Conclusions</p> <p>The purpose of this study is to report our negative experience with previously functional transactivator mice, to raise caution in the use of tet-based transgenic mouse lines and to reinforce the need for controls to ensure the stable functionality of generated tetracycline-controlled transactivators over time.</p
    • …
    corecore