59 research outputs found

    Automatically Discovering Hidden Transformation Chaining Constraints

    Get PDF
    Model transformations operate on models conforming to precisely defined metamodels. Consequently, it often seems relatively easy to chain them: the output of a transformation may be given as input to a second one if metamodels match. However, this simple rule has some obvious limitations. For instance, a transformation may only use a subset of a metamodel. Therefore, chaining transformations appropriately requires more information. We present here an approach that automatically discovers more detailed information about actual chaining constraints by statically analyzing transformations. The objective is to provide developers who decide to chain transformations with more data on which to base their choices. This approach has been successfully applied to the case of a library of endogenous transformations. They all have the same source and target metamodel but have some hidden chaining constraints. In such a case, the simple metamodel matching rule given above does not provide any useful information

    Platform Independent Web Application Modeling

    Full text link

    On hyperbolic fixed points in ultrametric dynamics

    Full text link
    Let K be a complete ultrametric field. We give lower and upper bounds for the size of linearization discs for power series over K near hyperbolic fixed points. These estimates are maximal in the sense that there exist examples where these estimates give the exact size of the corresponding linearization disc. In particular, at repelling fixed points, the linearization disc is equal to the maximal disc on which the power series is injective.Comment: http://www.springerlink.com/content/?k=doi%3a%2810.1134%2fS2070046610030052%2

    Linearization in ultrametric dynamics in fields of characteristic zero - equal characteristic case

    Full text link
    Let KK be a complete ultrametric field of charactersitic zero whose corresponding residue field k\Bbbk is also of charactersitic zero. We give lower and upper bounds for the size of linearization disks for power series over KK near an indifferent fixed point. These estimates are maximal in the sense that there exist exemples where these estimates give the exact size of the corresponding linearization disc. Similar estimates in the remaning cases, i.e. the cases in which KK is either a pp-adic field or a field of prime characteristic, were obtained in various papers on the pp-adic case (Ben-Menahem:1988,Thiran/EtAL:1989,Pettigrew/Roberts/Vivaldi:2001,Khrennikov:2001) later generalized in (Lindahl:2009 arXiv:0910.3312), and in (Lindahl:2004 http://iopscience.iop.org/0951-7715/17/3/001/,Lindahl:2010Contemp. Math) concerning the prime characteristic case

    Computing the NN-th Term of a qq-Holonomic Sequence

    Get PDF
    International audienceIn 1977, Strassen invented a famous baby-step / giant-step algorithm that computes the factorial N!N! in arithmetic complexity quasi-linear in N\sqrt{N}. In 1988, the Chudnovsky brothers generalized Strassen’s algorithm to the computation of the NN-th term of any holonomic sequence in the same arithmetic complexity. We design qq-analogues of these algorithms. We first extend Strassen’s algorithm to the computation of the qq-factorial of NN, then Chudnovskys' algorithm to the computation of the NN-th term of any qq-holonomic sequence. Both algorithms work in arithmetic complexity quasi-linear in~N\sqrt{N}. We describe various algorithmic consequences, including the acceleration of polynomial and rational solving of linear qq-differential equations, and the fast evaluation of large classes of polynomials, including a family recently considered by Nogneng and Schost
    • …
    corecore