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Computing the N -th Term of a q-Holonomic Sequence
Alin Bostan

Inria, France

ABSTRACT
In 1977, Strassen invented a famous baby-step / giant-step algorithm

that computes the factorial N ! in arithmetic complexity quasi-linear

in

√
N . In 1988, the Chudnovsky brothers generalized Strassen’s

algorithm to the computation of the N -th term of any holonomic se-

quence in the same arithmetic complexity. We design q-analogues
of these algorithms. We first extend Strassen’s algorithm to the

computation of the q-factorial of N , then Chudnovskys’ algorithm

to the computation of the N -th term of any q-holonomic sequence.

Both algorithms work in arithmetic complexity quasi-linear in

√
N .

We describe various algorithmic consequences, including the accel-

eration of polynomial and rational solving of linear q-differential
equations, and the fast evaluation of large classes of polynomials,

including a family recently considered by Nogneng and Schost.
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1 INTRODUCTION
A classical question in algebraic complexity theory is: how fast can

one evaluate a univariate polynomial at one point? The precise

formulation of this question depends on the model of computation.

We will mainly focus on the arithmetic complexity model, in which

one counts base field operations at unit cost.

Horner’s rule evaluates a polynomial P inO (deg(P )) operations.
Ostrowski [55] conjectured in 1954 that this is optimal for generic
polynomials (i.e., whose coefficients are algebraically independent).

This optimality result was proved a few years later by Pan [57].

However, most polynomials that one might wish to evaluate

have coefficients which are not algebraically independent. Paterson

and Stockmeyer [58] showed that for any field K, an arbitrary

polynomial P ∈ K[x] of degree n can be evaluated using O (
√
n)

nonscalar multiplications; however, their algorithm uses a linear

amount of scalar multiplications, so it is not well adapted to the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Preprint. To appear in ISSAC ’20, July 20–23, 2020, Kalamata, Greece
© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

evaluation at points from the base field K, since in this case the

total arithmetic complexity remains linear in n.
On the other hand, for some families of polynomials, one can do

much better. Typical examples are xn and Pn (x ) := xn−1+· · ·+x+1,
which can be evaluated by repeated squaring inO (logn) operations.
(Note that for Pn (x ) such a fast algorithmneeds to perform division.)

By contrast, a family Fn (x ) of univariate polynomials is called hard
to compute if the complexity of the evaluation of Fn grows at least

like a power in deg(Fn ), whatever the algorithm used.

Paterson and Stockmeyer [58] proved the existence of polyno-

mials in K[x] which are hard to compute. Specific families of hard-

to-compute polynomials were first exhibited by Strassen [70]. The

techniques were refined and improved by Borodin and Cook [13],

Lipton [52] and Schnorr [66], who produced explicit examples of

degree-n polynomials whose evaluation requires a number of op-

erations linear in

√
n. Subsequently, various methods have been

developed to produce similar results on lower bounds, e.g., by Heintz
and Sieveking [42] using algebraic geometry, and by Aldaz et al. [4]

using a combinatorial approach. The topic is vast and very well

summarized in the book by Bürgisser, Clausen and Shokrollahi [23].

In this article, we focus on upper bounds, that is on the design of

fast algorithms for special families of polynomials, which are hard

to compute, but easier to evaluate than generic polynomials. For

instance, for the degree-

(n
2

)
polynomial Qn (x ) := P1 (x ) · · · Pn (x ),

a complexity in O (n) is clearly achievable. We will see in §2.1 that

one can do better, and attain a cost which is almost linear in

√
n (up

to logarithmic factors in n). Another example is Rn (x ) :=
∑n
k=0 x

k2

,

of degree n2, and whose evaluation can also be performed in com-

plexity quasi-linear in

√
n, as shown recently by Nogneng and

Schost [54] (see §2.2). In both cases, these complexities are obtained

by clever although somehow ad-hoc algorithms. The starting point

of our work was the question whether these algorithms for Qn (x )
and Rn (x ) could be treated in a unified way, which would allow to

evaluate other families of polynomials in a similar complexity.

The answer to this question turns out to be positive. The key idea,

very simple and natural, is to view both examples as particular cases

of the following general question: given a q-holonomic sequence,

that is, a sequence satisfying a linear recurrence with polynomial

coefficients in q and qn , how fast can one compute its N -th term?

In the more classical case of holonomic sequences (satisfying

linear recurrences with polynomial coefficients in the index n), fast
algorithms exist for the computation of the N -th term. They rely

on a basic block, which is the computation of the factorial term N !

in arithmetic complexity quasi-linear in

√
N , using an algorithm

due to Strassen [71]. The Chudnovsky brothers extended in [26]

Strassen’s algorithm to the computation of the N -th term of any

holonomic sequence in arithmetic complexity quasi-linear in

√
N .

Ourmain contribution consists in transferring these results to the

q-holonomic framework. It turns out that the resulting algorithms

are actually simpler in the q-holonomic case than in the usual

holonomic setting, essentially because multipoint evaluation on

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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arithmetic progressions used as a subroutine in Strassen’s and

Chudnovskys’ algorithms is replaced by multipoint evaluation on

geometric progressions, which is considerably simpler [21].

A consequence of our results is that the following apparently

unrelated polynomials / rational functions can be evaluated fast

(note the change in notation, with the variable x denoted now by q):

• An (q), the generating function of the number of partitions

into n positive integers each occurring at most twice [75], i.e.,
the coefficient of tn in the product

∏
k≥1 (1 + q

k t + q2k t2).
• Bn (q) :=

∏∞
i=1 (1 − q

i ) mod qn ; by Euler’s pentagonal theo-

rem [56, §5], Bn (q) = 1 +
∑

i (3i+1)<2n

(−1)i
(
q
i (3 i−1)

2 + q
i (3 i+1)

2

)
.

• The number Cn (q) of 2n × 2n upper-triangular matrices

over Fq (the finite field with q elements), whose square is

the zero matrix; by [47], Cn (q) is equal to

Cn (q) =
∑
j

[(
2n

n − 3j

)
−

(
2n

n − 3j − 1

)]
· qn

2−3j2−j .

The common feature, exploited by the new algorithm, is that the

sequences (An (q))n≥0, (Bn (q))n≥0, (Cn (q))n≥0 are allq-holonomic.

Actually, q-holonomic sequences are ubiquitous, so the range of

application of our results is quite broad. This stems from the fact

that they are coefficient sequences of power series satisfying q-
differential equations, or equivalently,q-shift (or,q-difference) equa-
tions. From that perspective, our topic becomes intimately con-

nected with q-calculus. The roots of q-calculus are in works of

famous mathematicians such as Rothe, Gauss and Heine. The topic

gained renewed interest in the first half of the 20th century, with

the work, both on the formal and analytic aspects, of Tanner, Jack-

son, Carmichael, Mason, Adams, Trjitzinsky, Le Caine and Hahn,

to name just a few. Modern accounts of the various aspects of the

theory (including historical ones) can be found in [30, 32, 48].

One of the reasons for interest in q-difference equations is that,

formally, as q tends to 1, the q-derivative
f (qx )−f (x )

(q−1)x tends to f ′(x ),

thus to every differential equation corresponds a q-differential equa-
tion which goes formally to the differential equation as q → 1. In

nice cases, (some of) the solutions of the q-differential equation go

to solutions of the associated differential equation as q → 1. An

early example of such a good deformation behavior is given by the

basic hypergeometric equation of Heine [48, §1.10].

In computer algebra, q-holonomic sequences were considered

starting from the early nineties, in the context of computer-generated

proofs of identities in the seminal paper byWilf and Zeilberger [74],

notably in Section 5 (“Generalization to q-sums and q-multisums”)

and in Section 6.4 (“q-sums and integrals”). Creative telescoping

algorithms for (proper) q-hypergeometric sequences are discussed

in various references [12, 25, 61]; several implementations of those

algorithms are described for instance in [45, 60, 64, 69]. Algorithms

for computing polynomial, rational and q-hypergeometric solu-

tions of q-differential equations were designed by Abramov and

collaborators [1–3, 46]. These algorithms are important for several

reasons. One is that they lie at the heart of the vast generalization by

Chyzak [27, 28] of the Wilf and Zeilberger algorithmic theory, for

the treatment of general q-holonomic (not only q-hypergeometric)

symbolic summation and integration via creative telescoping. In

that context, a multivariate notion of q-holonomy is needed; the

foundations of the theory were laid by Zeilberger [77] and Sab-

bah [65] (in the language of D-modules), see also [25, § 2.5] and [37].

The simplest non-trivial holonomic sequence is n!, which combi-

natorially counts the number of permutations ofn objects. If instead

of direct counting, one assigns to every permutation π its number

of inversions inv(π ), i.e., the number of pairs 1 ≤ i < j ≤ n with

π (i ) > π (j ), the refined count (by size and number of inversions)

is [n]q ! := (1 + q) (1 + q + q2) · · · (1 + q + · · · + qn−1). This is the
q-analogue of n!, the simplest non-trivial q-holonomic sequence.

There is also a natural q-analog of the binomial coefficients,

called the Gaussian coefficients, defined by

(n
k

)
q
:=

[n]q !
[k]q ![n−k]q !

.

They have many counting interpretations, e.g., they count the k-
dimensional subspaces of Fnq (points on Grassmannians over Fq ).

There are q-analogs to (almost) everything. To select just two basic

examples, the q-analog [5, Thm. 3.3] of the binomial theorem is

n∏
k=1

(1 + qk−1x ) =
n∑

k=0

(
n

k

)
q
q(

k
2
)xk (1)

and the q-version [5, Thm. 3.4] of the Chu-Vandermonde identity is

n∑
k=0

qk
2

(
m

k

)
q

(
n

k

)
q
=

(
m + n

n

)
q
. (2)

The ubiquity of q-holonomic sequences is manifest in plenty

of fields: partition theory [5, 56] and other subfields of combina-

torics [33, 47]; theta functions and modular forms [51, 59, 76]; spe-

cial functions [48] and in particular orthogonal polynomials [49]; al-

gebraic geometry [31], representation theory [44]; knot theory [35–

37]; Galois theory [43]; number theory [29].

The main message of this article is that for any example of

q-holonomic sequence occurring in those various fields, one can
compute selected coefficients faster than by a direct algorithm.

Complexity basics. We estimate the complexities of algorithms

by counting arithmetic operations (+,−,×,÷) in the base field K
at unit cost. We use standard complexity notation, such as M(d )
for the cost of degree-d multiplication in K[x] and θ for feasi-

ble exponents of matrix multiplication. The best known upper

bound is θ < 2.3729 [34]. Most arithmetic operations on univari-

ate polynomials of degree d in K[x] can be performed in quasi-

linear complexity Õ (d ): multiplication, shift, interpolation, gcd,

resultant, etc∗. A key feature of these results is the reduction to

fast polynomial multiplication, which can be performed in time

M(d ) = O (d logd log logd ) [24, 68]. An excellent general reference

for these questions is the book by von zur Gathen and Gerhard [38].

2 TWOMOTIVATING EXAMPLES
Before presenting our main results in Section 3, we describe in

this section the approach and main ideas on two basic examples.

Both examples concern the fast evaluation of special families of

univariate polynomials. In §2.1, we consider polynomials of the

form

∏
ℓ (x − qℓ ), and in §2.2 sparse polynomials of the form∑

ℓ p
ℓxaℓ

2+bℓ
. In both cases, we first present fast ad-hoc algorithms,

then introduce equally fast alternative algorithms, which have the

nice feature that they will be generalizable to a broader setting.

∗
As usual, the notation Õ ( ·) is used to hide polylogarithmic factors in the argument.
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2.1 De Feo’s question
Here is our first example, emerging from a question asked to the

author by Luca De Feo
∗
; this was the starting point of the article.

Let q be an element of the field K, and consider the polynomial

F (x ) :=
N−1∏
i=0

(x − qi ) ∈ K[x]. (3)

Given another element α ∈ K, how fast can one evaluate F (α )?
If q = 0, then F (α ) = αN can be computed in O (logN ) opera-

tions in K, by binary powering. We assume in what follows that q
is nonzero. Obviously, a direct algorithm consists in computing

the successive powers q,q2, . . . ,qN−1 using O (N ) operations in K,
then computing the elements α − q,α − q2, . . . ,α − qN−1 in O (N )
more operations in K, and finally returning their product. The total

arithmetic cost of this algorithm is O (N ), linear in the degree of F .
Is it possible to do better? The answer is positive, as one can use

the following baby-step / giant-step strategy, in which, in order to

simplify things, we assume that N is a perfect square
∗∗
, N = s2:

Algorithm 1

(1) (Baby-step) Compute the values of q,q2, . . . ,qs−1, and de-

duce the coefficients of the polynomialG (x ) :=
∏s−1

j=0 (x−q
j ).

(2) (Giant-step) ComputeQ := qs ,Q2, . . . ,Qs−1
, and deduce the

coefficients of the polynomial H (x ) :=
∏s−1

k=0 (α −Q
k · x ).

(3) Return the resultant Res(G,H ).

By the basic property of resultants, the output of this algorithm is

Res(G,H )=
s−1∏
j=0

H (qj ) =
s−1∏
j=0

s−1∏
k=0

(
α − qsk+j

)
=

N−1∏
i=0

(α−qi ) = F (α ).

Using the fast subproduct tree algorithm [38, Algorithm 10.3],

one can perform the baby-step (1) as well as the giant-step (2)

in O (M(
√
N ) logN ) operations in K, and by [38, Corollary 11.19]

the same cost can be achieved for the resultant computation in

step (3). Using fast polynomial multiplication, we conclude that

F (α ) can be computed in arithmetic complexity quasi-linear in

√
N .

It is possible to speed up the previous algorithm by a logarithmic

factor in N using a slightly different scheme, still based on a baby-
step / giant-step strategy, but exploiting the fact that the roots of F
are in geometric progression. Again, we assume that N = s2 is a
perfect square. This alternative algorithm goes as follows. Note that

it is very close in spirit to Pollard’s algorithm [62, p. 523].

Algorithm 2

(1) (Baby-step) Compute q,q2, . . . ,qs−1, and deduce the coeffi-

cients of the polynomial P (x ) :=
∏s−1

j=0 (α − q
j · x ).

(2) (Giant-step) ComputeQ := qs ,Q2, . . . ,Qs−1
, and evaluate P

simultaneously at 1,Q, . . . ,Qs−1
.

(3) Return the product P (1)P (Q ) · · · P (Qs−1).

Obviously, the output of this algorithm is

s−1∏
k=0

P (Qk ) =
s−1∏
k=0

s−1∏
j=0

(α − qj · qsk ) =
N−1∏
i=0

(α − qi ) = F (α ).

∗
Private (email) communication, 10 January, 2020.

∗∗
If N is not a perfect square, then one can compute F (α ) as F (α ) = F1 (α )F2 (α ),

where F1 (α ) :=
∏⌊√N ⌋2−1
i=0 (α − qi ) is computed as in Algorithm 1, while F2 (α ) :=∏N−1

i=⌊
√
N ⌋2

(α − qi ) can be computed naively, since N − ⌊
√
N ⌋

2

= O (
√
N ).

As pointed out in the remarks after the proof of [21, Lemma 1], one

can compute P (x ) = Ps (x ) =
∏s−1

j=0 (α − q
j · x ) in step (1) without

computing the subproduct tree, by using a divide-and-conquer

scheme which exploits the fact that P2t (x ) = Pt (x ) · Pt (q
tx ) and

P2t+1 (x ) = Pt (x ) · Pt (q
tx ) · (α − q2tx ). The cost of this algorithm

is O (M(
√
N )) operations in K. As for step (2), one can use the fast

chirp transform algorithms of Rabiner, Schafer and Rader [63] and of

Bluestein [11]. These algorithms rely on the following observation:

writing Qi j = Q (i+j
2
) ·Q−(

i
2
) ·Q−(

j
2
)
and P (x ) =

∑s
j=0 c jx

j
implies

that the needed values P (Qi ) =
∑s
j=0 c jQ

i j , 0 ≤ i < s , are

P (Qi ) = Q−(
i
2
) ·

s∑
j=0

c jQ
−(j

2
) ·Q (i+j

2
) , 0 ≤ i < s,

in which the sum is simply the coefficient of xs+i in the product

*.
,

s∑
j=0

c jQ
−(j

2
)xs−j+/

-

*.
,

2s∑
ℓ=0

Q (ℓ
2
)xℓ+/

-
.

This polynomial product can be computed in 2M(s ) operations (and
even inM(s ) +O (s ) using the transposition principle [20, 40], since

only the median coefficients xs , . . . ,x2s−1 are actually needed). In

conclusion, step (2) can also be performed inO (M(
√
N )) operations

in K, and thusO (M(
√
N )) is the total cost of this second algorithm.

We have chosen to detail this second algorithm for several rea-

sons: not only because it is faster by a factor log(N ) compared to the

first one, but more importantly because it has a simpler structure,

which will be generalizable to the general q-holonomic setting.

2.2 Evaluation of some sparse polynomials
Let us now consider the sequence of sparse polynomial sums

v
(p,a,b )
N (q) =

N−1∑
n=0

pnqan
2+bn ,

where p ∈ K and a,b ∈ Q such that 2a,a +b are both integers. Typ-

ical examples are (truncated) modular forms [59], which are ubiqui-

tous in number theory [76] and combinatorics [5]. For instance, the

Jacobi theta function ϑ3 depends on two complex variables z ∈ C,
and τ ∈ C with ℑ(τ ) > 0, and it is defined by

ϑ3 (z;τ ) =
∞∑

n=−∞
eπ i (n

2τ+2nz ) = 1 + 2

∞∑
n=1

ηnqn
2

,

where q = eπ iτ is the nome (|q | < 1) and η = e2π iz . Here, K = C.
Another example is the Dedekind eta function, appearing in Euler’s

famous pentagonal theorem [56, §5], which has a similar form

q
1

24 · *
,
1 +

∞∑
n=1

(−1)n
(
q
n (3n−1)

2 + q
n (3n+1)

2

)
+
-
, with q = e2π iτ .

Moreover, sums of the form v
(1,a,b )
N (q) =

∑N−1
n=0 qan

2+bn
, over

K = Q or K = F2, crucially occur in a recent algorithm by Tao,

Crott and Helfgott [72] for the efficient construction of prime num-

bers in given intervals, e.g., in the context of effective versions of

Bertrand’s postulate. Actually, (the proof of) Lemma 3.1 in [72] con-

tains the first sublinear complexity result for the evaluation of the

sumv
(p,a,b )
N (q) at an arbitrary point q; namely, the cost isO (N θ /3),

where θ ∈ [2, 3] is any feasible exponent for matrix multiplication.
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Subsequently, Nogneng and Schost [54] designed a faster algorithm,

and lowered the cost down to Õ (
√
N ). Our algorithm is similar in

spirit to theirs, as it also relies on a baby-step / giant-step strategy.

Let us first recall the principle of the Nogneng-Schost algo-

rithm [54]. Assume as before that N is a perfect square, N = s2.
The starting point is the remark that

v
(p,a,b )
N (q) =

N−1∑
n=0

pnqan
2+bn =

s−1∑
k=0

s−1∑
j=0

p j+skqa (j+sk )
2+b (j+sk )

can be written

s−1∑
k=0

pskqas
2k2+bsk · P (q2ask ), where P (y) :=

s−1∑
j=0

p jqaj
2+bjy j .

Therefore, the computation ofv
(p,a,b )
N (q) can be reduced essentially

to the simultaneous evaluation of the polynomial P at s = 1+deg(P )

points (in geometric progression), with arithmetic cost O (M(
√
N )).

We now describe an alternative algorithm, of similar complexity

O (M(
√
N )), with a slightly larger constant in the big-Oh estimate,

but whose advantage is its potential of generality.

Let us denote by un (q) the summand pnqan
2+bn

. Clearly, the

sequence (un (q))n≥0 satisfies the recurrence relation

un+1 (q) = A(q,qn ) · un (q), where A(x ,y) := pxa+by2a .

As an immediate consequence, the sequence with general term

vn (q) :=
∑n−1
k=0 uk (q) satisfies a similar recurrence relation

vn+2 (q) −vn+1 (q) = A(q,qn ) · (vn+1 (q) −vn (q)),

with initial conditions v0 (q) = 0 and v1 (q) = 1. This scalar recur-

rence of order two is equivalent to the first-order matrix recurrence

[
vn+2
vn+1

]
=

[
A(q,qn ) + 1 −A(q,qn )

1 0

]
×

[
vn+1
vn

]
.

By unrolling this matrix recurrence, we deduce that

[
vn+1
vn

]
= M (qn−1)

[
vn
vn−1

]
= M (qn−1) · · ·M (q)M (1)

[
1

0

]
,

where

M (x ) :=

[
pqa+bx2a + 1 −pqa+bx2a

1 0

]
,

hence vN =
[
0 1

]
× M (qN−1) · · ·M (q)M (1) ×

[
1

0

]
. Therefore,

the computation of vN reduces to the computation of the “matrix

q-factorial” M (qN−1) · · ·M (q)M (1), which can be performed fast

by using a baby-step / giant-step strategy similar to the one of the

second algorithm in §2.1. Again, we assume for simplicity that

N = s2 is a perfect square. The algorithm goes as follows.

Algorithm 3 (matrix q-factorial)

(1) (Baby-step) Compute q,q2, . . . ,qs−1; deduce the coefficients

of the polynomial matrix P (x ) := M (qs−1x ) · · ·M (qx )M (x ).
(2) (Giant-step) Compute Q := qs ,Q2, . . . ,Qs−1

, and evaluate

(the entries of) P (x ) simultaneously at 1,Q, . . . ,Qs−1
.

(3) Return the product P (Qs−1) · · · P (Q )P (1).

By proceeding as in Algorithm 2 in §2.1, the complexity of Al-
gorithm 3 already is quasi-linear in

√
N . However, its dependence

in a,b is quite high (quasi-linear in a and b). If a and b are fixed and

considered as O (1) this dependence is invisible, but otherwise the

following variant has the same complexity with respect to N , and

a much better cost with respect to a and b. It is based on the simple

observation that, if M̃ (x ) denotes the polynomial matrix

M̃ (x ) :=

[
prx + 1 −prx

1 0

]
, with r := qa+b , (4)

and if q̃ := q2a , then the following matrix q-factorials coincide:

M (qN−1) · · ·M (q)M (1) = M̃ (q̃N−1) · · · M̃ (q̃)M̃ (1).

Algorithm 4 (matrix q-factorial, variant)

(0) (Precomputation) Compute r := qa+b , q̃ := q2a , and M̃ in (4).

(1) (Baby-step) Compute q̃, q̃2, . . . , q̃s−1; deduce the coefficients

of the polynomial matrix P̃ (x ) := M̃ (q̃s−1x ) · · · M̃ (q̃x )M̃ (x ).
(2) (Giant-step) Compute Q̃ := q̃s , Q̃2, . . . , Q̃s−1

, and evaluate

(the entries of) P̃ (x ) simultaneously at 1, Q̃, . . . , Q̃s−1
.

(3) Return the product P̃ (Q̃s−1) · · · P̃ (Q̃ )P̃ (1).

Using binary powering, the cost of the additional precomputation

in step (0) is only logarithmic in a and b. In exchange, the new

steps (2) and (3) are performed on matrices whose degrees do not

depend on a and b anymore (in the previous, unoptimized, version

the degrees of the polynomial matrices were linear in a and b). The

total arithmetic cost with respect to N is still quasi-linear in

√
N .

3 MAIN RESULTS
In this section, we generalize the algorithms from §2, and show

that they apply to the general setting of q-holonomic sequences.

3.1 Preliminaries
A sequence is q-holonomic if it satisfies a nontrivial q-recurrence,
that is, a linear recurrence with coefficients polynomials in q and qn .

Definition 3.1 (q-holonomic sequence). LetK be a field, and q ∈ K.
A sequence (un (q))n≥0 in K

N
is called q-holonomic if there exist

r ∈ N and polynomials c0, . . . , cr in K[x ,y], with cr , 0, such that

cr (q,q
n )un+r (q) + · · · + c0 (q,q

n )un (q) = 0, for all n ≥ 0. (5)

The integer r is called the order of the q-recurrence (5). When r = 1,

we say that (un (q))n≥0 is q-hypergeometric.

The most basic examples are the q-bracket and the q-factorial,

[n]q := 1 + q + · · · + qn−1 and [n]q ! :=
n∏

k=1

[k]q . (6)

They are clearly q-holonomic, and even q-hypergeometric.

The sequences (un ) = (qn ), (vn ) = (qn
2

) and (wn ) = (q(
n
2
) ) are

also q-hypergeometric, since they satisfy the recurrence relations

un+1 − qun = 0, vn+1 − q
2n+1vn = 0, wn+1 − q

nwn = 0.

However, the sequence (qn
3

) is not q-holonomic [37, Ex. 2.2(b)].

Another basic example is the q-Pochhammer symbol

(x ;q)n :=

n−1∏
k=0

(1 − xqk ) (7)

which is also q-hypergeometric, since (x ;q)n+1− (1−xq
n ) (x ;q)n =

0. In particular, the sequence (q;q)n :=
∏n

k=1 (1−q
k ), also denoted

(q)n , is q-hypergeometric and satisfies (q)n+1 − (1−q
n+1) (q)n = 0.
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As mentioned in the introduction, q-holonomic sequences show

up in various contexts. As an example, in (quantum) knot theory, the

(“colored”) Jones function of a (framed oriented) knot (in 3-space) is

a powerful knot invariant, related to the Alexander polynomial [6];

it is a q-holonomic sequence of Laurent polynomials [36]. Its re-

currence equations are themselves of interest, as they are closely

related to the A-polynomial of a knot, via the AJ conjecture, verified
in some cases using massive computer algebra calculations [35].

It is well known that the class of q-holonomic sequences is

closed under several operations, such as addition, multiplication,

Hadamard product and monomial substitution [37, 45]. All these

closure properties are effective, i.e., they can be executed algorithmi-

cally on the level of q-recurrences. Several computer algebra pack-

ages are available for the manipulation of q-holonomic sequences,

e.g., the Mathematica packages qGeneratingFunctions [45] and
HolonomicFunctions [50], and the Maple packages qsum [12],

qFPS [69], qseries and QDifferenceEquations.
A simple but useful fact is that the order-r scalar q-recurrence (5)

can be translated into a first-order recurrence on r × 1 vectors:



un+r
...

un+1



=



−
cr−1
cr · · · −

c1
cr −

c0
cr

1 · · · 0 0

...
. . .

...
...

0 · · · 1 0



×



un+r−1
...

un



. (8)

In particular, the N -th term of the q-holonomic sequence (un ) is
simply expressible in terms of the matrix q-factorial

M (qN−1) · · ·M (q)M (1), (9)

whereM (qn ) denotes the companion matrix from equation (8).

3.2 Computation of the q-factorial
We now give the promised q-analogue of Strassen’s result on the

computation of N ! inO (M(
√
N ) logN ) arithmetic operations. Note

that Strassen’s case q = 1 is also covered by [19, §6], where the cost

O (M(
√
N )) is reached under some invertibility assumptions.

Theorem 3.2. Let K be a field, let q ∈ K \ {1} and N ∈ N. The
q-factorial [N ]q ! can be computed usingO (M(

√
N )) operations in K.

The same is true for the q-Pochhammer symbol (α ;q)N for any α ∈ K.

Proof. If α = 0, then (α ;q)N = 1. If q = 0, then [N ]q ! = 1 and

(α ;q)N = 1 − α . We can assume that q ∈ K \ {0, 1} and α ∈ K \ {0}.
We have [N ]q ! = rN · F (q−1) and (α ;q)N = αN · F (α−1), where

r := q/(1−q) and F (x ) :=
∏N−1

i=0 (x−qi ). Algorithm 2 can be used to
compute F (q−1) and F (α−1) inO (M(

√
N )) operations inK. The cost

of computing rN and αN is O (logN ), and thus it is negligible. □

Corollary 3.3. Under the assumptions of Theorem 3.2 and for
any n ∈ N, one can compute in O (M(

√
N )) operations in K:

• the q-binomial coefficient
(N
n

)
q
;

• the coefficient of xn in the polynomial
∏N

k=1 (1 + q
k−1x );

• the sum
(N−n

0

)
q

(n
0

)
q
+q

(N−n
1

)
q

(n
1

)
q
+ · · ·+qn

2
(N−n

n

)
q

(n
n

)
q
.

Proof. The first assertion is a direct consequence of Theorem 3.2.

The second assertion is a consequence of the first one, and of (1).

The third assertion is a consequence of the first one, and of (2). □

3.3 N -th term of a q-holonomic sequence
We give the promised q-analogue of Chudnovskys’ result on the

computation of the N -th term of an arbitrary holonomic sequence

inO (M(
√
N ) logN ) arithmetic operations. Note that Chudnovskys’

case q = 1 is also covered by [19, §6], where the improved cost

O (M(
√
N )) is reached under additional invertibility assumptions.

Theorem 3.4. Let K be a field, q ∈ K \ {1} and N ∈ N. Let
(un (q))n≥0 be a q-holonomic sequence satisfying recurrence (5), and
assume that cr (q,qk ) is nonzero for k = 0, . . . ,N − 1. Then, uN (q)

can be computed in O (M(
√
N )) operations in K.

Proof. Using equation (8), it is enough to show that the matrix

q-factorialM (qN−1) · · ·M (q)M (1) can be computed in O (M(
√
N )),

where M (qn ) denotes the companion matrix from equation (8).

Algorithms 3 and 4 adapt mutatis mutandis to this effect. □

Corollary 3.5. Let K be a field, q ∈ K not a root of unity, and
N ∈ N. Let eq (x ) be the q-exponential series

eq (x ) :=
∑
n≥0

xn

[n]q !

and let E (N )
q (x ) := eq (x ) mod xN be its truncation of degree N − 1.

If α ∈ K, one can compute E (N )
q (α ) in O (M(

√
N )) operations in K.

Proof. Denote the summand
αn
[n]q !

by un (q). Then (un (q))n is

q-hypergeometric, and satisfies the recurrence [n + 1]qun+1 (q) −

αun = 0, therefore vN (q) :=
∑N−1
i=0 ui (q) satisfies the second-order

recurrence [n + 1]q (vn+2 (q) −vn+1 (q)) − α (vn+1 (q) −vn (q)) = 0.

Applying Theorem 3.4 to vN (q) concludes the proof. □

Remark that the same result holds if eq (x ) is replaced by any

power series satisfying a q-differential equation. For instance, one
can evaluate fast all truncations of Heine’s q-hypergeometric series

2ϕ1 ([a,b], [c];q;x ) :=
∑
n≥0

(a;q)n (b;q)n
(c;q)n

·
xn

(q)n
.

Remark that Theorem 3.4 can be adapted to the computation of

several coefficients of a q-holonomic sequence. We omit the proof,

which is similar to that of Theorem 15 in [19].

Theorem 3.6. Under the assumptions of Theorem 3.4, let N1 <

N2 < · · · < Ns = N be positive integers, where s < N
1

2
−ε for some

0 < ε < 1

2
. Then, the terms uN1

(q), . . . ,uNs (q) can be computed
altogether in O (M(

√
N )) operations in K.

3.4 The case q is an integer: bit complexity
Until now, we only considered the arithmetic complexity model.

We briefly discuss here the case where q is an integer (or rational)

number. The arithmetic complexity model needs to be replaced by

the bit-complexity model, and the matrix q-factorials from §3.1 are

computed by binary splitting rather than by baby-steps / giant-steps.
As an illustrative example, consider the computation of the term

uN (q) =
∑N−1
n=0 qn

2

, where q is assumed to be an integer of B bits.

The integer uN (q) is bounded in absolute value by NqN
2

, so its

bitsize is of magnitude N 2B. The “naive” algorithm consisting of

computing the summands qn
2

one after the other, before summing

https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/qGeneratingFunctions.html
https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/qGeneratingFunctions.html
http://www.hypergeometric-summation.org
http://www.hypergeometric-summation.org
http://www.hypergeometric-summation.org
https://qseries.org/fgarvan/qmaple/qseries/index.html
https://fr.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations
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them, has bit complexity Õ (N 3B). This is not (quasi-)optimal with

respect to the output size. Can one do better? The answer is “yes”.

It is sufficient to use the q-holonomic character of uN (q), and to

reduce its computation to that of a q-factorial matrix (9) as in §2.2.

Now the point is that, instead of using baby-steps / giant-steps, it is

a better idea to use binary splitting. The complexity of this approach

becomes then quasi-optimal, that is Õ (N 2B), which is quasi-linear

in the bitsize of the output. The following general result can be

proved along the same lines.

Theorem 3.7. Under the assumptions of Theorem 3.4, with K = Q,
the term uN (q) can be computed in Õ (N 2B) bit operations, where B
is the bitsize of q.

As a corollary, (truncated) solutions of q-differential equations
can be evaluated using the same (quasi-linear) bit complexity. This

result should be viewed as the q-analogue of the classical fact that
holonomic functions can be evaluated fast using binary splitting,

a 1988 result by the Chudnovsky brothers [26, §6], anticipated

a decade earlier (without proof) by Schroeppel and Salamin in

Item 178 of [7]; see [8, §12] for a good survey on binary splitting.

4 APPLICATIONS
4.1 Combinatorial q-holonomic sequences
As already mentioned, many q-holonomic sequences arise in combi-

natorics, for example in connection with the enumeration of lattice

polygons, where q-analogues of the Catalan numbers
1

n+1

(
2n
n

)
oc-

cur naturally [33, 39], or in the enumeration of special families

of matrices with coefficients in the finite field Fq [47], where se-

quences related to the Gaussian coefficients

(n
k

)
q
also show up.

A huge subfield of combinatorics is the theory of partitions [5],

whereq-holonomic sequences occur as early as in the famous Roger-

Ramanujan identities [5, Ch. 7], e.g.,

1 +
∑
n≥1

qn
2

(1 − q) · · · (1 − qn )
=

∏
n≥0

1

(1 − q5n+1) (1 − q5n+4)

which translates the fact that the number of partitions of n into

parts that differ by at least 2 is equal to the number of partitions

of n into parts congruent to 1 or 4modulo 5. Andrews [5, Chapter 8]

laid the foundations of a theory able to capture the q-holonomy of

any generating function of a so-called linked partition ideal.
As a consequence, a virtually infinite number of special families

of polynomials coming from partitions can be evaluated fast. For

instance, the family of truncated polynomials

Fn (x ) :=
∞∏
k=1

(1 − xk )3 mod xn ,

can be evaluated fast due to our results and to the identity [56, §6]

FN (q) =
∑

(n+1
2
)<N

(−1)n (2n + 1)q(
n+1
2
) .

4.2 Evaluation of q-orthogonal polynomials
In the theory of special functions, orthogonal polynomials play a

fundamental role. There exists an extension to the q-framework of

the theory, see e.g., Chapter 9 in Ernst’s book [32]. Amongst the

most basic examples, the discrete q-Hermite polynomials are defined
by their q-exponential generating function∑

n≥0
Fn,q (x )

tn

[n]q !
=

eq (xt )

eq (t )eq (−t )
,

and therefore they satisfy the second-order linear q-recurrence

Fn+1,q (x ) = xFn,q (x ) − (1 − qn )qn−1Fn−1,q (x ), n ≥ 1,

with initial conditions F0,q (x ) = 1, F1,q (x ) = x . From there, it fol-

lows that for any α ∈ K, the sequence (Fn,q (α ))n≥0 is q-holonomic,

thus the evaluation of then-th polynomial at x = α can be computed

fast. The same is true for the continuous q-Hermite polynomials, for
which 2αHn,q (α ) = Hn+1,q (α ) + (1 − qn )Hn−1,q (α ) for n ≥ 1, and

H0,q (α ) = 1,H1,q (α ) = 2α . More generally, our results in §3 imply

that any family of q-orthogonal polynomials can be evaluated fast.

4.3 Polynomial and rational solutions of
q-differential equations

The computation of polynomial and rational solutions of linear dif-

ferential equations lies at the heart of several important algorithms,

for computing hypergeometric and Liouvillian solutions, for fac-

toring and for computing differential Galois groups [73]. Creative

telescoping algorithms (of second generation) for multiple integra-

tion with parameters [28, 50] also rely on computing rational solu-

tions, or deciding their existence. The situation is completely similar

for q-differential equations: improving algorithms for polynomial

and rational solutions of such equations is important in finding

q-hypergeometric solutions [3], in computing q-differential Galois
groups [43], and in performing q-creative telescoping [28, 49, 50].

In both differential and q-differential cases, algorithms for com-

puting polynomial solutions proceed in two distinct phases: (i) com-

pute a degree bound N , potentially exponentially large in the equa-

tion size; (ii) reduce the problem of computing polynomial solu-

tions of degree at most N to linear algebra. Abramov, Bronstein and

Petkovšek showed in [1] that, in step (ii), linear algebra in sizeN can

be replaced by solving a much smaller system, of polynomial size.

However, setting up this smaller system still requires linear time

in N , essentially by unrolling a (q-)linear recurrence up to terms of

indices close to N . For differential (and difference) equations, this

step has been improved in [17, 18], by using Chudnovskys’ algo-

rithms for computing fast the N -th term of a holonomic sequence.

This allows for instance to decide (non-)existence of polynomial

solutions in sublinear time Õ (
√
N ). Moreover, when polynomial so-

lutions exist, one can represent / manipulate them in compact form
using the recurrence and initial terms as a compact data structure.

The same improvements can be transferred toq-differential equa-
tions, in order to improve the existing algorithms [1, 2, 46]. In this

case, setting up the smaller system in phase (ii) amounts to com-

puting the N -th term of a q-holonomic sequence, and this can be

done fast using our results in §3
∗
.

∗
A technical subtlety is that, as pointed out in [1, §4.3], it is not obvious in the q-
differential case how to guarantee the non-singularity of the q-recurrence on the

coefficients of the solution. This induces potential technical complications similar

to the ones for polynomial solutions of differential equations in small characteristic,

which can nevertheless be overcome by adapting the approach described in [22, §3.2].
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4.4 q-hypergeometric creative telescoping
In the case of differential and difference hypergeometric creative

telescoping, it was demonstrated in [17] that the compact repre-

sentation for polynomial solutions can be used as an efficient data

structure, and can be applied to speed up the computation of Gosper

forms and Zeilberger’s classical summation algorithm [61, §6]. The

key to these improvements lies in the fast computation of the N -th

term of a holonomic sequence, together with the close relation be-

tween Gosper’s algorithm and the algorithms for rational solutions.

Similarly, in the q-differential case, Koornwinder’s q-Gosper
algorithm [49, §5] is closely connected to Abramov’s algorithm for

computing rational solutions [2, §2], and this makes it possible to

transfer the improvements for rational solutions to the q-Gosper
algorithm. This leads in turn to improvements upon Koornwinder’s

algorithm for q-hypergeometric summation [49], along the same

lines as in the differential and difference cases [17].

5 EXPERIMENTS
A preliminary implementation in Magma of Algorithms 1 and 2
in §2.1 delivers some encouraging timings. Of course, since these

algorithms are designed to be fast in the arithmetic model, it is natu-
ral to make experiments over a finite field K, or over truncations of
real/complex numbers, as was done in [54] for the problem in §2.2.

Recall that both Algorithms 1 and 2 compute

∏N−1
i=0 (α − qi ) ∈ K,

given α ,q in a fieldK, and N ∈ N. In our experiments,K is the finite

field Fp with p = 2
30+3 elements. Timings are given in Table 1. We

compare the straightforward iterative algorithm (column Naive), to
the fast baby-step / giant-step algorithms, one based on subproduct

trees and resultants (column Algorithm 1), the other based on mul-

tipoint evaluation on geometric sequences (column Algorithm 2).
Some conclusions can be drawn by analyzing these timings:

• The theoretical complexities are perfectly reflected in prac-

tice: timings are multiplied (roughly) by 4 in column Naive,
and (roughly) by 2 in columns Algorithm 1 and Algorithm 2.
• The asymptotic regime is reached from the very beginning.

• Algorithm 2 is always faster than Algorithm 1, which is itself

much faster than the Naive algorithm, as expected.

• A closer look into the timings shows that for Algorithm 1,
≈ 80% of the time is spent in step (3) (resultant computation),

the other steps taking ≈ 10% each; for Algorithm 2, step (1)

takes ≈ 25%, step (2) takes ≈ 75%, and step (3) is negligible.

6 CONCLUSION AND FUTUREWORK
We have shown that selected terms of q-holonomic sequences can

be computed fast, both in theory and in practice, the key being the

extension of classical algorithms in the holonomic (“q = 1”) case.

We have demonstrated through several examples that this basic

algorithmic improvement has many other algorithmic implications,

notably on the faster evaluation of many families of polynomials

and on the acceleration of algorithms for q-differential equations.
Here are some questions that we plan to investigate in the future.

1. (Computing curvatures of q-differential equations) In the

differential case, p-curvatures can be computed fast [14–

16, 22]. What about the q-differential analogue? One strong
motivation comes from the fact that the q-analogue [10] of
Grothendieck’s conjecture (relating equations over Q with

degree N Naive algorithm Algorithm 1 Algorithm 2
2
16

0.04 0.03 0.00

2
18

0.18 0.03 0.01

2
20

0.72 0.06 0.01

2
22

2.97 0.14 0.02

2
24

11.79 0.32 0.04

2
26

47.16 0.73 0.08

2
28

188.56 1.68 0.15

2
30

755.65 3.84 0.31

2
32

3028.25 8.65 0.64

2
34

19.65 1.41

2
36

44.42 2.96

2
38

101.27 6.36

2
40

228.58 14.99

2
42

515.03 29.76

2
44

1168.51 61.69

2
46

2550.28 137.30

2
48

297.60

2
50

731.63

2
52

1395.33

2
54

3355.39

Table 1 Comparative timings (in seconds) for the computation of∏N−1
i=0 (α − qi ) ∈ Fp , with p = 2

30 + 3 and (α, q ) randomly chosen

in Fp × Fp . All algorithms were executed on the same machine, running

Magma v. 2.24. For each target degree N , each execution was limited to

one hour. Naive algorithm could reach degree N = 2
32
, Algorithm 1 degree

N = 2
46
, and Algorithm 2 degree N = 2

54 = 8 014 398 509 481 984. By

extrapolation, the Naive algorithm would have needed ≈ 4
11 × 3028.25 sec.

≈ 400 years on the same instance, and Algorithm 2 approximately 18 hours.

their reductions modulo primes p) is proved [29]. This could

be used to improve the computation of rational solutions.

2. (Computing points on q-curves) Counting efficiently points

on (hyper-)elliptic curves leads to questions like: for a,b ∈ Z,

compute the coeff. of x
p−1
2 in Gp (x ) := (x2 + ax + b)

p−1
2

modulo p, for one [19] or several [41] primes p. A natu-

ral extension is to ask the same with Gp (x ) replaced by∏ p−1
2

k=1 (q
2kx2+aqkx+b). This might have applications related

to Question 1, or to counting points on q-deformations [67].

3. (Computing q-deformed real numbers) Recently, Morier-

Genoud and Ovsienko [53] introduced q-analogues of real
numbers. How fast can one compute (truncations / evalua-

tions of) quantized versions of numbers like e or π?

4. (Evaluating more polynomials) Is it possible to evaluate fast

polynomials of the form

∑N
n=0 x

ns
, for s ≥ 3, and many oth-

ers that escape the q-holonomic class? E.g., [9] presents a
beautiful generalization of Algorithm 1 to the fast evalua-

tion of isogenies between elliptic curves, by using elliptic
resultants, with applications in isogeny-based cryptography.

Acknowledgements. I thank Luca De Feo for his initial question,

who motivated this work, and for the very interesting subsequent

discussions. My friendly thanks go to Lucia Di Vizio, Kilian Raschel

and Sergey Yurkevich for their careful reading of the manuscript.

I am indebted to the three referees for many helpful remarks. This

work was supported in part by DeRerumNatura ANR-19-CE40-0018.

http://magma.maths.usyd.edu.au
https://specfun.inria.fr/chyzak/DeRerumNatura/


Preprint. To appear in ISSAC ’20, July 20–23, 2020, Kalamata, Greece Alin Bostan

REFERENCES
[1] S. A. Abramov, M. Bronstein, and M. Petkovšek. On polynomial solutions of

linear operator equations. In ISSAC’95, pages 290–296. ACM, 1995.

[2] S. A. Abramov. Rational solutions of linear difference and q-difference equations
with polynomial coefficients. Programmirovanie, (6):3–11, 1995.

[3] S. A. Abramov, P. Paule, and M. Petkovšek. q-hypergeometric solutions of

q-difference equations. Discrete Math., 180(1-3):3–22, 1998.
[4] M. Aldaz, G. Matera, J. L. Montaña, and L. M. Pardo. A new method to obtain

lower bounds for polynomial evaluation. TCS, 259(1-2):577–596, 2001.
[5] G. E. Andrews. The theory of partitions. Addison-Wesley, Reading, 1976.

[6] D. Bar-Natan and S. Garoufalidis. On the Melvin-Morton-Rozansky conjecture.

Invent. Math., 125(1):103–133, 1996.
[7] M. Beeler, R. Gosper, and R. Schroeppel. HAKMEM. Artificial Intelligence Memo

No. 239. MIT, 1972. http://www.inwap.com/pdp10/hbaker/hakmem/algorithms.

[8] D. J. Bernstein. Fast multiplication and its applications. In Algorithmic number
theory: lattices, number fields, curves and cryptography, MSRIP 44:325–384. 2008.

[9] D. J. Bernstein, L. De Feo, A. Leroux, and B. Smith. Faster computation of

isogenies of large prime degree. Preprint, 2020. https://eprint.iacr.org/2020/341.

[10] J.-P. Bézivin. Les suites q-récurrentes linéaires. Comp. Math., 80:285–307, 1991.
[11] L. I. Bluestein. A linear filtering approach to the computation of the discrete

Fourier transform. IEEE Trans. Electroacoustics, AU-18:451–455, 1970.
[12] H. Böing and W. Koepf. Algorithms for q-hypergeometric summation in com-

puter algebra. J. Symbolic Comput., 28(6):777–799, 1999.
[13] A. Borodin and S. Cook. On the number of additions to compute specific

polynomials. SIAM J. Comput., 5(1):146–157, 1976.
[14] A. Bostan, X. Caruso, and É. Schost. A fast algorithm for computing the charac-

teristic polynomial of the p-curvature. In ISSAC’14, pages 59–66. ACM, 2014.

[15] A. Bostan, X. Caruso, and É. Schost. A fast algorithm for computing the p-
curvature. In ISSAC’15, pages 69–76. ACM, 2015.

[16] A. Bostan, X. Caruso, and É. Schost. Computation of the similarity class of the

p-curvature. In ISSAC’16, pages 111–118. ACM, 2016.

[17] A. Bostan, F. Chyzak, T. Cluzeau, and B. Salvy. Low complexity algorithms for

linear recurrences. In ISSAC’06, pages 31–38. ACM, 2006.

[18] A. Bostan, T. Cluzeau, and B. Salvy. Fast algorithms for polynomial solutions of

linear differential equations. In ISSAC’05, pages 45–52. ACM, 2005.

[19] A. Bostan, P. Gaudry, and É. Schost. Linear recurrences with polynomial co-

efficients and application to integer factorization and Cartier-Manin operator.

SIAM J. Comput., 36(6):1777–1806, 2007.
[20] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In ISSAC’03,

pages 37–44. ACM, 2003.

[21] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special

sets of points. J. Complexity, 21(4):420–446, 2005.
[22] A. Bostan and É. Schost. Fast algorithms for differential equations in positive

characteristic. In ISSAC’09, pages 47–54. ACM, 2009.

[23] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory,
volume 315 of Grundlehren der Mathematischen Wissenschaften. Springer, 1997.

[24] D. G. Cantor and E. Kaltofen. On fastmultiplication of polynomials over arbitrary

algebras. Acta Inform., 28(7):693–701, 1991.
[25] P. Cartier. Démonstration “automatique” d’identités et fonctions hyper-

géométriques (d’après D. Zeilberger). Astérisque, (206): 41–91, 1992. S. Bourbaki.
[26] D. V. Chudnovsky and G. V. Chudnovsky. Approximations and complex multi-

plication according to Ramanujan. In Ramanujan revisited (Urbana-Champaign,
Ill., 1987), pages 375–472. Academic Press, Boston, MA, 1988.

[27] F. Chyzak. Gröbner bases, symbolic summation and symbolic integration. In

Gröbner bases and applications, volume LMS LN 251:32–60. CUP, 1998.

[28] F. Chyzak. An extension of Zeilberger’s fast algorithm to general holonomic

functions. Discrete Math., 217(1-3):115–134, 2000.
[29] L. Di Vizio. Arithmetic theory of q-difference equations: the q-analogue of

Grothendieck-Katz’s conjecture on p-curvatures. Invent. Math., 150:517–578,
2002.

[30] L. Di Vizio, J.-P. Ramis, J. Sauloy, and C. Zhang. Équations aux q-différences.
Gaz. Math., (96):20–49, 2003.

[31] T. Ekedahl and G. van der Geer. Cycle classes on the moduli of K3 surfaces in

positive characteristic. Selecta Math. (N.S.), 21(1):245–291, 2015.
[32] T. Ernst. A comprehensive treatment of q-calculus. Birkhäuser/Springer, 2012.
[33] J. Fürlinger and J. Hofbauer. q-Catalan numbers. JCTA, 40(2):248–264, 1985.
[34] F. Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC’14, pages

296–303. ACM, 2014.

[35] S. Garoufalidis and C. Koutschan. Irreducibility of q-difference operators and
the knot 74 . Algebr. Geom. Topol., 13(6):3261–3286, 2013.

[36] S. Garoufalidis and T. T. Q. Lê. The colored Jones function is q-holonomic.

Geom. Topol., 9:1253–1293, 2005.
[37] S. Garoufalidis and T. T. Q. Lê. A survey of q-holonomic functions. Enseign.

Math., 62(3-4):501–525, 2016.
[38] J. von zur Gathen and J. Gerhard. Modern computer algebra. CUP, 3rd ed., 2013.

[39] I. Gessel. A noncommutative generalization and q-analog of the Lagrange

inversion formula. Trans. Amer. Math. Soc., 257(2):455–482, 1980.

[40] G. Hanrot, M. Quercia, and P. Zimmermann. The middle product algorithm. I.

Appl. Algebra Engrg. Comm. Comput., 14(6):415–438, 2004.
[41] D. Harvey. Counting points on hyperelliptic curves in average polynomial time.

Ann. of Math. (2), 179(2):783–803, 2014.
[42] J. Heintz and M. Sieveking. Lower bounds for polynomials with algebraic

coefficients. TCS, 11(3):321–330, 1980.
[43] P. A. Hendriks. An algorithm for computing a standard form for second-order

linear q-difference equations. J. Pure Appl. Algebra, 117/118:331–352, 1997.
[44] J. Hua. Counting representations of quivers over finite fields. J. Algebra,

226(2):1011–1033, 2000.

[45] M. Kauers and C. Koutschan. A Mathematica package for q-holonomic se-

quences and power series. Ramanujan J., 19(2):137–150, 2009.
[46] D. E. Khmel

′
nov. Improved algorithms for solving difference and q-difference

equations. Programmirovanie, (2):70–78, 2000.
[47] A. A. Kirillov and A. Melnikov. On a remarkable sequence of polynomials.

In Algèbre non commutative, groupes quantiques et invariants (Reims, 1995),
volume 2 of Sémin. Congr., pages 35–42. Soc. Math. France, Paris, 1997.

[48] R. Koekoek, P. A. Lesky, and R. F. Swarttouw. Hypergeometric orthogonal poly-
nomials and their q-analogues. Monographs in Mathematics. Springer, 2010.

[49] T. H. Koornwinder. On Zeilberger’s algorithm and its q-analogue. J. Comput.
Appl. Math., 48(1-2):91–111, 1993.

[50] C. Koutschan. A fast approach to creative telescoping. Math. Comput. Sci.,
4(2-3):259–266, 2010.

[51] H. Labrande. Computing Jacobi’s theta in quasi-linear time. Math. Comp.,
87(311):1479–1508, 2018.

[52] R. J. Lipton. Polynomials with 0 − 1 coefficients that are hard to evaluate. SIAM
J. Comput., 7(1):61–69, 1978.

[53] S. Morier-Genoud and V. Ovsienko. On q-deformed real numbers. Exp. Math.,
pages 1–9, 2019. To appear.

[54] D. Nogneng and É. Schost. On the evaluation of some sparse polynomials. Math.
Comp., 87(310):893–904, 2018.

[55] A. Ostrowski. On two problems in abstract algebra connected with Horner’s

rule. In Studies in mathematics and mechanics presented to Richard von Mises,
pages 40–48. Academic Press Inc., 1954.

[56] I. Pak. Partition bijections, a survey. Ramanujan J., 12(1):5–75, 2006.
[57] V. Y. Pan. Methods of computing values of polynomials. Russian Mathematical

Surveys, 21(1):105–136, 1966.
[58] M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications

necessary to evaluate polynomials. SIAM J. Comput., 2:60–66, 1973.
[59] P. Paule and S. Radu. Rogers-Ramanujan functions, modular functions, and

computer algebra. In Advances in computer algebra, PROMS 226, 229–280, 2018.

[60] P. Paule and A. Riese. A Mathematica q-analogue of Zeilberger’s algorithm
based on an algebraically motivated approach to q-hypergeometric telescoping.

In Special functions, q-series and related topics, FIC 14:179–210. AMS, 1997.

[61] M. Petkovšek, H. S. Wilf, and D. Zeilberger. A = B . A K Peters, 1996.

[62] J. M. Pollard. Theorems on factorization and primality testing. Proc. Cambridge
Philos. Soc., 76:521–528, 1974.

[63] L. R. Rabiner, R. W. Schafer, and C. M. Rader. The chirp z-transform algorithm

and its application. Bell System Tech. J., 48:1249–1292, 1969.
[64] A. Riese. qMultiSum—a package for proving q-hypergeometric multiple sum-

mation identities. J. Symbolic Comput., 35(3):349–376, 2003.
[65] C. Sabbah. Systèmes holonomes d’équations aux q-différences. In D-modules

and microlocal geometry (Lisbon, 1990), pages 125–147. de Gruyter, 1993.
[66] C.-P. Schnorr. improved lower bounds on the number of multiplications /

divisions which are necessary to evaluate polynomials. TCS, 7(3):251–261, 1978.
[67] P. Scholze. Canonical q-deformations in arithmetic geometry. Ann. Fac. Sci.

Toulouse Math. (6), 26(5):1163–1192, 2017.
[68] A. Schönhage. SchnelleMultiplikation von Polynomen über Körpern der Charak-

teristik 2. Acta Informatica, 7:395–398, 1977.
[69] T. Sprenger and W. Koepf. Algorithmic determination of q-power series for

q-holonomic functions. J. Symbolic Comput., 47(5):519–535, 2012.
[70] V. Strassen. Polynomials with rational coefficients which are hard to compute.

SIAM J. Comput., 3:128–149, 1974.
[71] V. Strassen. Einige Resultate über Berechnungskomplexität. Jber. Deutsch.

Math.-Verein., 78(1):1–8, 1976/77.
[72] T. Tao, E. Croot, III, and H. Helfgott. Deterministic methods to find primes.

Math. Comp., 81(278):1233–1246, 2012.
[73] M. van der Put and M. F. Singer. Galois theory of linear differential equations,

volume 328 of Grundlehren der Mathematischen Wissenschaften. Springer, 2003.
[74] H. S. Wilf and D. Zeilberger. An algorithmic proof theory for hypergeometric

(ordinary & q) multisum/integral identities. Invent. Math., 108(3):575–633, 1992.
[75] K.-W. Yang. On the product

∏
n≥1 (1 + qnx + q2nx 2 ). J. Austral. Math. Soc.

Ser. A, 48(1):148–151, 1990.
[76] D. Zagier. Elliptic modular forms and their applications. In The 1-2-3 of modular

forms, Universitext, pages 1–103. Springer, 2008.
[77] D. Zeilberger. A holonomic systems approach to special functions identities. J.

Comput. Appl. Math., 32(3):321–368, 1990.

http://www.inwap.com/pdp10/hbaker/hakmem/algorithms.html
https://www.cambridge.org/9780521808545
https://eprint.iacr.org/2020/341
https://link.springer.com/book/10.1007/978-3-319-73232-9
https://bookstore.ams.org/fic-14

	Abstract
	1 Introduction
	2 Two motivating examples
	2.1 De Feo's question
	2.2 Evaluation of some sparse polynomials

	3 Main results
	3.1 Preliminaries
	3.2 Computation of the q-factorial
	3.3 N-th term of a q-holonomic sequence
	3.4 The case q is an integer: bit complexity

	4 Applications
	4.1 Combinatorial q-holonomic sequences
	4.2 Evaluation of q-orthogonal polynomials
	4.3 Polynomial and rational solutions of q-differential equations
	4.4 q-hypergeometric creative telescoping

	5 Experiments
	6 Conclusion and future work
	References

